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This presentation summarizes aspects of ongoing work being conducted jointly at NOAA’s Geophysical Fluid 

Dynamics Laboratory in Princeton, New Jersey -and- at Texas Tech University. 

Consistent with the theme of this session, we present here a method by which one can examine, in a quantitative 

manner, one often underappreciated source of uncertainty in statistically downscaled climate change projections – 

uncertainty arising from what can be referred to as ‘the stationarity assumption’. 

The research work is funded in part by the US Dept of Interior’s South Central Climate Science Center: 

http://southcentralclimate.org/ & 

https://nccwsc.usgs.gov/display-project/4f8c652fe4b0546c0c397b4a/5012e146e4b05140039e03cb 

The experimental design protocol and selected results from this project are expected to be part of a National 

Climate Predictions & Projections (NCPP) Downscaling Workshop in Aug 2013.  

http://www.earthsystemcog.org/projects/downscaling-2013.  

 NOAA/GFDL received FY12&13 funds from NOAA-CPO for IT infrastructure development activities associated with 

this project. 

 

- - -  

My email: Keith.Dixon@noaa.gov 

My web page: http://www.gfdl.noaa.gov/kd 

NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL)  
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The process by which multi-decadal global climate change projections are generated and processed so that they may be used 

as input to regional or local-scale adaptation planning and climate change impacts studies contains multiple steps, each which 

has its own set of assumptions, imperfections, and hence uncertainties.   

As illustrated here, uncertainties exist regarding the amounts and types of greenhouse gases and radiatively active aerosols 

that humans will emit in the future. This source of uncertainty is often acknowledged by users of climate information by 

examining climate model-based projections forced by different emissions scenarios. 

Uncertainties in how the global climate system will respond to a given emission scenario is evident in that different global climate 

models (GCMs) exhibit different climate sensitivities and patterns of response. Users often explore this type of uncertainty by 

examining output derived from GCMs developed at different research institutions. Projections of future climate generated by 

different GCMs driven by different emissions scenarios are available to users as part of efforts such as the CMIP5 Data Portal. 

Yet, one way a GCM’s results can fall short of the expectations of end users is that GCM output is often on a too coarse grid to 

provide the desired level of local detail. For example, a GCM with 200km grid spacing can have a single grid cell that overlies 

ocean waters, beaches, mountains, and everything in between, though the user may be interested in a single location within that 

area. Additionally, GCM simulations of the contemporary climate may exhibit significant biases at the location of interest (e.g., 

too hot, too cold, too wet, too dry). Statistical downscaling is often employed in an attempt to account for model biases and to 

provide additional spatial detail. (For those familiar with operational weather forecasting, you can think of statistical downscaling 

of climate model output as being a statistical refinement step analogous to the MOS - Model Output Statistics.) A statistical 

downscaling step, generally considered a “value-added” process, does however, introduce its own uncertainties. 

I will also note that statistical downscaling is not the only approach one can take when seeking to generate climate model 

projections at finer spatial resolution than a GCM. Dynamical Downscaling – the use of finer scale three-dimensional regional 

climate models driven by GCM output – is another approach being discussed at this meeting, but not in my talk. For some 

applications, the output of regional climate models is refined further by statistical downscaling. 

 

Related Links: 

Downscaling classifications overview: http://en.wikipedia.org/wiki/Downscaling 

CMIP5 Data Portal: http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html 

MOS: http://www.nws.noaa.gov/tdl/synop/presentations/maryland.ppt 
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In this talk, we present an experimental design developed to isolate and quantify one particular source (but not the 

only source) of uncertainty arising from statistical downscaling of climate projections – the stationarity assumption. 

The stationarity assumption is inherent to statistical downscaling of multi-decadal climate change projections, with 

the assumption being that statistical relationship between global climate model simulation outputs and real, 

observed climate data remain constant over time. In other words, we seek to test the assumption that the statistical 

relationships (aka transform functions)  ‘learned’ during the statistical downscaling training step, are valid when used 

to generate downscaled estimates of future climate projections. We evaluate the extent to which the stationarity 

assumption holds by using a ‘perfect model’ (or ‘big brother’) framework, as described on the following slides. 
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Here we illustrate schematically the way in which our ‘perfect model’ framework isolates and quantifies the extent to 

which the stationarity assumption holds. We will do so by first describing one typical way that statistical downscaling 

is implemented in practice. We will contrast that with our perfect model framework, in subsequent slides.  

In our example representing a typical real-world application, we start with two data sets - one data set containing 

observations at the locations of interest for the period 1979-2008 and a companion dataset of GCM model results for 

the same time period. During the ‘training step’, statistical methods are used to compare the modeled and observed 

data sets, and in the process downscaling transform functions are derived that express relationships between the 

GCM output and the observations. Cross-validation tests performed using the GCM’s output (the predictors) and 

observational  data sets (the predictands) from the 1979-2008 era allow one to quantitatively assess how well the 

statistical downscaling method’s transform functions account for GCM biases and finer scale details for the time 

period for which there are observations. 
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Having derived transform functions from 1979-2008 observational and GCM data sets during the training step, we 

can turn our attention to GCM projections of future conditions.  

GCM projections of future climate – listed in the example here as being for the 2086-2095 time period – lack finer 

scale detail one might presume contain biases not dissimilar to those found in the GCM’s 1979-2008 simulation.  

So, one can ‘plug’ the late 21st century GCM results (used as predictors) into the downscaling equations (transform 

functions) established during the earlier training step, in order to generate downscaled versions of the late 21st 

Century GCM projections.  Statistically downscaled 21st Century projections generated in this manner can be 

considered a proxy for future observations in user applications. 

 Inherent in this process is the assumption that the transform functions derived for the 1979-2008 period apply 

equally well to the 2086-2095 period. Stated another way, one assumes that, even in the face of a changing climate, 

what was ‘learned’ during the training step is applicable to future climate states. This is what we refer to as the 

stationarity assumption. 

Though, as mentioned above, the skill of a statistical downscaling method can be quantitatively assessed for the 

1979-2008 period via cross-validation, the lack of future observations precludes one from conducting a similar 

downscaling skill assessment for late 21st Century projections. Hence, a direct assessment of the extent to which 

the stationarity assumption is valid can not be performed using the observational and GCM data sets in real-world 

applications, as outlined on this slide.  

By utilizing different data sets, the perfect model experimental design described on the following slides provides a 

framework to overcome this diagnostic hurdle. 

 

NOTE: Numerous statistical downscaling techniques exist. They span a wide range of complexity and can differ 

somewhat in the combination of data sets used in the training step. The schematic outline provided here represents 

many, but not all, statistical downscaling techniques. However, what they all have in common when used to produce 

statistically downscaled estimates of future climate projections is that they will employ data sets from the three gray 

boxes shown in the schematic to generate estimates for the upper right box – and in so doing, they inherently 

assume stationarity of statistical relationships developed from data drawn from some the gray boxes.  
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The choice of data sets used is what distinguishes our ‘perfect model’ experiment design from more typical ‘real-

world’ statistical downscaling procedures, such as the one outlined on the previous 2 slides.  

As shown in this revised schematic, in the perfect model framework we substitute high resolution GCM output for 

observations. (One can think of the high resolution GCM output from a model with ~25km grid spacing as being a 

proxy for a gridded observational product with similar spatial resolution.) Additionally, we take the high resolution 

GCM output and interpolate it to a much coarser grid having ~200km grid spacing. In the perfect model framework, 

this ‘coarsened’ version of the high resolution GCM data set will take the place of the data sets labeled ‘GCM 

simulation’ in previous slides. By using a conservative interpolation scheme, we assure that, when computed over 

the full spatial domain, area average values of climate variables of interest are identical for the original high 

resolution GCM output and the coarsened (low resolution) version produced via interpolation. So, while comparison 

of a high resolution GCM data set and its coarsened by interpolation companion will not exhibit large-scale spatial 

biases, finer scale details that are lost when interpolating to the coarser grid do result in biases at the grid point 

level. 

In our framework, the statistical downscaling training step that uses as input the 1979-2008 high resolution GCM 

data set as predictands and a coarsened version of itself as predictors yields transform functions that, in effect, 

attempt to recover the finer scale details and information lost as a byproduct of the interpolation process.  
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Moving to the 21st century time frame, one can appreciate an important way in which our ‘perfect model’ 

experimental design differs from the usual real-world application of statistical downscaling climate change 

projections. Unlike the real-world case - for which we lack observations of the future – in this framework we can 

directly and quantitatively evaluate the skill of the statistical downscaling when applied to future projections by 

comparing the statistically downscaled results for 2086-2095 to the actual results of the high resolution GCM 

projections for that time period, grid point by grid point on the 25km grid [indicated by the red box in the upper right 

quadrant of the schematic]. The stationarity assumption can be said to be perfectly valid if the skill exhibited during 

the late 21st century period equals that calculated via cross validation of the 1979-2008 period results [indicated by 

the red box in the upper left quadrant].  Any degradation in skill (increase in the error computed by differencing the 

high resolution GCM ‘truth’ and estimates produced by the statistical downscaling) provides quantitative information 

indicating the extent to which the stationarity assumption does not perfectly hold. 

 

NOTE: The use of the term ‘perfect model’ should not be mistaken as a claim that a perfect, error-free model exists 

(neither the GCM nor the statistical model). Rather, it is a term used to identify a type of experimental design or 

analysis strategy that eschews observational data for model results so as to isolate particular factors and/or to allow 

assessments of models and methods when observations do not exist. In this case, our perfect model approach uses 

no observational data. The only data sets required are high resolution GCM results, produced by the same GCM, 

representing two time periods with different climate characteristics [the upper two boxes in the schematic]. The 

coarsened datasets [the lower two boxes] are generated simply by interpolating the GCM results to a lower 

resolution grid (one might consider interpolation to be a very simple model). In turn, the statistical downscaling 

techniques used to generate high resolution estimates from coarse resolution inputs are statistical models, as well. 

For evaluation purposes, the late 21st century climate projections produced by the high resolution GCM serve as the 

’truth’ in this perfect model framework – something not available when using real-world data. 
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Having outlined our ‘perfect model’ (or ‘big brother’) experimental design, we now turn to illustrating how this 

approach can be applied to garner information about how well the stationarity assumption holds in one particular 

case.  Given time constraints, the analysis presented herein is rather limited, but we hope it provides a sufficient 

illustration of the technique so that one might better appreciate the method and perhaps prompt some offline 

discussions. 

The high resolution global climate model we use in this example is the GFDL-HIRAM-360 model, which has ~25km 

grid spacing. The model covers the entire globe, but for illustration purposes we present results focusing on the 

contiguous 48 United States. Here we see an annual mean climatology of daily maximum temperature calculated 

from a two-member ensemble of AMIP-style experiments run for the time period 1979-2008 (60 years total).  

 

Note: For completeness, we note that the GFDL-HIRAM-C360 experiments shown here were run as AMIP-style 

experiments following CMIP5 protocols. This means that rather than having the GCM’s atmosphere and land 

surface components coupled to fully dynamical ocean and sea ice model components, observed time-varying sea 

surface temperatures (SSTs) and sea ice values were specified as lower boundary conditions. That the climate 

model we use to illustrate the perfect model experimental design was run in this manner, rather than as a fully 

coupled dynamical atmosphere-ocean model, does not alter the qualitative results presented here. The perfect 

model framework applies just as well to fully coupled GCMs. 
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Here we zoom in on the northwestern US, so that one might visually compare the high resolution ~25km grid of the 

C360 model output (individual color filled boxes) and the approximate size of a grid cell on the coarser grid (~200km 

grid spacing). 

About 64 of the smaller ~25km grid cells fit within the larger ~200km grid cell. 
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When we apply conservative first-order interpolation, the annual mean model-generated climatology for daily 

maximum temperature goes from looking like this…  
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…to this. 

The area mean computed across the entire domain is the same for the two data sets having different spatial 

resolution, however the loss of information incurred due to interpolation is readily evident when comparing this slide 

with the previous slide. 
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Next, the same GFDL-HIRAM-C360 model code was run in ‘time-slice mode’ to produce sets of future high 

resolution climate projections.  For the purposes of this illustration, suffice it to say that two sets of C360 (high 

resolution GCM) projections were generated for the period 2086-2095, with each set consisting of three ensemble 

members. Both sets of projections exhibit a sizable amount of warming by the late 21st century. One set, labeled “C” 

here, warmed more than the other set labeled “E”.  
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As shown in the bar charts, the warming of daily maximum temperatures in the set of  “C” experiments averaged 

slightly more than 2 degrees Celsius greater than that simulated in the set of “E” experiments, when averaged over 

the region mapped.  Considering only land points, daily maximum temperatures in the set of “C” experiments on 

average warmed 7.2C vs. 5.0C of warming in the set of “E” experiments. Daily maximum temperatures over land 

warmed more than over ocean points, as evident in the “over land only” average being about 1C greater than that 

computed over the entire geographic region shown in the maps. 

 

Note: For completeness, we note that for time-slice simulations of the future, projected changes in SSTs and sea ice 

simulated by fully coupled global GCMs (GFDL CM3 = “C” and GFDL ESM2M = “E”) are imposed as lower 

boundary conditions for the high resolution C360 model. 
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On this map, we show one measure of how well a particular downscaling method was able to recover the full detail 

of daily maximum temperatures simulated by the high resolution model during the 1979-2008 period.  We refer to 

the measure shown as the “Mean Absolute downscaling Error”, or “MAE”. At each high resolution grid point and for 

each day in the GCM simulations we compute the difference between the actual high resolution GCM’s daily 

maximum temperature and the estimate for that day produced by plugging the coarsened version of the model 

output into the previously computed downscaling transform functions. We then take the absolute value of that 

downscaling error for each day and compute the average over all 21,900 days (2 ensemble members x 30 years per 

ensemble x 365 days per year) and map the results. 

One can see that smaller MAE values tend to occur over the open ocean and that larger MAE values tend to occur 

along coastlines and areas of step topography – places one might expect to have larger horizontal gradients in the 

high resolution data that could be poorly represented when interpolated to a much coarser grid. 

We can consider this map to serve as a baseline, against which MAE values computed for the 2086-2095 period 

can be compared. If the stationarity assumption holds, the MAE maps computed for the late 21st century projections 

would not exhibit significantly larger MAE values.  
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Here we show the time mean MAE field for daily maximum temperature averaged over the 3 members of the “E” 

ensemble (the set of late 21st century projections that warmed on average 5.0C over land points). Visual inspection 

suggests that the MAE of this set of late 21st century experiments is greater than that computed for the 1979-2008 

period.  A similar pattern of smaller errors over the ocean and larger errors along coasts and mountainous regions is 

seen in this map and the previous map of the 1979-2008 period. 

(Recall that the downscaling transform functions were computed by comparing the coarsened predictors to the high 

resolution GCM’s daily maximum temperatures [predictands] for the 1979-2008 time period and that late 21st 

century statistically downscaled estimates were produced by plugging coarsened versions of the 2086-2095 GCM 

fields into the transform functions computed for the earlier period.) 
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And here we show the time mean MAE field for daily maximum temperature averaged over the 3 members of the 

“C” ensemble (the set of late 21st century projections that warmed on average 7.2C over land points). Visual 

inspection suggests that the MAE of this set of late 21st century experiments is greater than those computed for the 

set of later 21st century “E” experiments and the 1979-2008 period. Some of the larger MAE values are seen over 

peninsulas (Florida and Baja California). 
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The bar graphs presented here document the area average MAE values computed over the geographic domain 

shown in the three previous maps. For each of the three pairs of adjacent bars, the bar on the left represents the 

average MAE computed over all points (land and ocean) and the bar on the right represents the average MAE 

computed over land points only.  

The leftmost of the three pairs of bars shows MAE values for the baseline 1979-2008 case.  

Comparing the baseline results (left) with the rightmost pair of bars reveals that average MAE values increased by 

20% in the “E” experiments that experienced a mean warming of daily maximum temperature over land of 5.0C.  

And comparing the baseline results (left) with the center pair of bars reveals that average MAE values were 40% 

greater in the “C” experiments that experienced a mean warming of daily maximum temperature over land of 7.2C. 

The relative increase in the area averaged MAE was similar over land and over ocean points for both the “C” and 

“E” cases. 

From these results, one can conclude the statistical relationships (aka transform functions) ‘learned’ during the 

statistical downscaling training step used in this particular example produces larger errors when used to generate 

downscaled estimates of future climate projections than when applied to the same time period used in the training.  

Thus, one can state that the stationarity assumption is not completely valid, though the amount by which the error 

could grow and still be considered to produce a “value added product” is subjective. It is not our intent here to render 

such judgments. Nor are we suggesting that the MAE should be considered the error metric of choice when making 

such assessments. Rather, our goal is to present an experimental design that allows one to quantitatively assess 

the issue, and to provide examples of analyses that illustrate the potential of this experimental design. 
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Next we illustrate geographical differences in the extent to which the MAE error statistic grows when going from the 

1979-2008 base period to the late 21st century projections. We do so by computing and mapping the ratio of the 

MAE computed for the late 21st century period to the MAE computed over the base period. 

This map shows the results for the set of “E” experiments (the ones in which daily maximum temperatures warmed 

~5.0C on average over land). 

The blue contour is drawn for ratios of 1.0, indicating that the few areas shaded in light blue did not experience an 

increase in MAE for daily maximum temperature. Note the non-linear color bar. Areas having the lightest shading 

(nearly white) had time mean MAEs grow by less than 10%. Areas shade the light orange had MAE grow from 10 to 

25%, etc. A faint dashed contour encompasses areas in which MAE values computed over 2086-2095 were more 

than double that of the base period.  
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In general, the non-uniform pattern of relative MAE increases seen in the “C” case shown here (7.2C warming over 

land) appears to be an amplified version of that seen in the “E” case (previous slide) that experienced ~2C less 

warming.  

Earlier, we noted that the largest MAE values tended to occur along coastlines and mountainous areas. 

Interestingly, we see here that the MAE Ratio tends to increase much more along coasts than in interior mountain 

regions. This observation has prompted us to initiate additional analyses reviewing the nature of the downscaling 

errors along coasts in the hope of gaining an understanding of whether this behavior arises from a weakness in the 

particular downscaling method used to generate these results -or- from a change in GCM-simulated climate patterns 

or atmospheric circulation that only expresses itself in the late 21st century, and thus can not be readily detected by 

statistical downscaling training that uses 1979-2008 data sets as input. 

 

Note: The statistical downscaling method employed in these examples is an asynchronous regional regression 

model (ARRM) - a daily quantile regression approach documented in… 

Stoner, A. M. K., Hayhoe, K., Yang, X. and Wuebbles, D. J. (2012), An asynchronous regional regression model for 

statistical downscaling of daily climate variables. Int. J. Climatol.. doi: 10.1002/joc.3603 

http://onlinelibrary.wiley.com/doi/10.1002/joc.3603/abstract 

See also http://cida.usgs.gov/climate/hayhoe_projections.jsp 
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Of course, looking at annual mean error statistics is not the only way one can examine validity of the stationarity 

assumption. 

In the next three slides we show seasonal variations of the MAE Ratio for different geographic regions. 

The first will display results averaged over the entire domain shown here. 

The second will focus on the area average for the central US region shaded green – an area that had relative low 

annual mean MAE values. 

The third will focus on the Florida peninsula area shaded here – an area that had relatively large annual mean MAE 

values and large MAE ratios. 
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For the full geographic domain, we see that the stationarity assumption holds fairly well during the winter months 

and that the largest contribution to the annual mean MAE Ratio increase comes from August. We also see that the 

general seasonal pattern in similar in the “C” (red) and “E” (blue) experiments, though the “C” case exhibits greater 

increases in the ratio year-round. 

 

Note: In this graph and the two that follow, the seasonally-varying climatologies of MAE ratios were computed day-

by-day from the 30 years available for each of the “C” and “E” ensembles of late 21st century projections and from 

the 60 years available from the two 1979-2008 experiments.  A 31 day boxcar smoother was applied to remove 

shorter-term noise from the plotted curves. 
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Here we see results for the central US area – a region that was characterized by relatively low MAEs compared to 

other land areas. It is interesting to note the summertime increase in MAE Ratio is readily apparent in the “C” 

experiments that experienced more warming, but less so in the “E” experiments.  
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For the Florida Peninsula region – an area of relatively large downscaling errors – we see that the increase in the 

errors during the late 21st century relative to those during the 1979-2008 period are much more pronounced in the 

summer than in the winter. Again we see that the larger the amount of warming, the greater the increase in the 

downscaling errors (“C” errors are greater that “E” errors).  
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The bullets on this slide list some of the general findings we have presented. We hope the presentation was 

successful at conveying information about our perfect model framework and how it can be applied to assess the 

validity of the stationarity assumption in applications of statistical downscaling -and- that one can appreciate that 

analyses of this type can also yield information about the characteristics of the downscaling techniques themselves 

(insights that may feedback to inform development of refined versions of the techniques). 

 

In summary, the intent of this presentation was to… 

(a) describe what the ‘stationarity assumption’ is as it relates to creating statistically downscaled climate change 

projections and why it matters. 

(b) outline a ‘perfect model’ (aka ‘big brother’) experimental design that allows one to isolate and quantify the 

extent to which the stationarity assumption holds for a given application. 

(c) begin to illustrate the kinds of analyses one can perform using results of the perfect model framework. 

 

What is presented here only scratches the surface of what can be examined using this experimental design. 

Questions we will continue to explore include… 

(i) How well do different downscaling techniques perform with respect to the stationarity assumption when 

applied to the same perfect model data sets. 

(ii) Examine a wider range of climate model outputs (temperature, precipitation, surface radiation, soil moisture, 

etc.) 

(iii) Apply different measurements of skill to the output of the perfect model experiments, for example, methods 

that focus on the performance for extreme events. 

(iv) One can apply the perfect model experimental design using output from different GCMs, thereby testing 

whether the statistical downscaling results are sensitive to the underlying GCM.  
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