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Summary
Motivation

I 4DVAR sets up a very large nonlinear least squares problem.

I Expensive: iterations, each evaluating the model, tangent and
adjoing operators, and solving large linear least squares.

I Extra code for tangent and adjoint operators.

I Iterations may not converge, not even locally.

I Need to parallelize.

Method

I Solve the linear least squares from 4DVAR by EnKS, naturally
parallel over the ensemble members.

I Linear algebra glue is cheap, or use parallel dense libraries.

I Finite differences ⇒ no tangent and adjoint operators needed.

I Add Tikhonov regularization to the linear least squares ⇒
Levelberg-Marquardt method, guaranteed convergence.

I Cheap and simple implementation of Tikhonov regularization within
EnKS as an additional observation.



Weak Constraint 4DVAR

I We want to determine x0, . . . , xk (xi = state at time i)
approximately from model and observations (data)

x0 ≈ xb state at time 0 ≈ the background
xi ≈ Mi (xi−1) state evolution ≈ by the model

Hi (xi ) ≈ yi value of observation operator ≈ the data

I quantify “≈” by covariances

x0 ≈ xb ⇔ ‖x0 − xb‖2
B−1 = (x0 − xb)

T B−1 (x0 − xb) ≈ 0 etc.

I ⇒ nonlinear least squares problem

‖x0 − xb‖2
B−1 +

k

∑
i=1

‖xi −Mi (xi−1)‖2
Q−1

i
+

k

∑
i=1

‖yi −Hi (xi )‖2
R−1
i
→ min

x0:k

I Originally in 4DVAR, xi =Mi (xi−1). The weak constraint
xi ≈Mi (xi−1) accounts for model error (Trémolet, 2007).



Incremental 4DVAR

I Incremental approach (Courtier et al., 1994): linearization

Mi (xi−1 + δxi−1) ≈Mi (xi−1) +M′
i (xi−1) δxi−1

Hi (xi + δxi ) ≈ Hi (xi ) +H′i (δxi )

I gives the Gauss-Newton method (Bell, 1994), iterations

x0:k ← x0:k + δx0:k

with the linear least squares problem for the increments δx0:k

‖x0 + δx0 − xb‖2
B−1 +

k

∑
i=1

∥∥xi + δxi −Mi (xi−1)−M′
i (xi−1) δxi−1

∥∥2
Q−1

i

+
k

∑
i=1

∥∥yi −Hi (xi )−H′i (xi ) δxi
∥∥2

R−1
i
→ min

δx0:k



Linearized 4DVAR as Kalman smoother

Write the linear least squares problem for the increments z0:k = δx0:k as

‖z0 − zb‖2
B−1 +

k

∑
i=1

‖zi −Mizi−1 −mi‖2
Q−1

i
+

k

∑
i=1

‖di −Hizi‖2
R−1
i
→ min

z0:k

zb = xb − x0, mi =Mi (xi−1)− xi , di = yi −Hi (xi ) ,

Mi =M′
i (xi−1) , Hi = H′i (xi )

I This is the same function as minimized in the Kalman smoother
(Rauch et al., 1965; Bell, 1994)

Z0 = zb +V0, V0 ∼ N (0, B)
Zi = MiZi−1 +mi +Vi , Vi ∼ N (0, Qi )
di = HiZi +Wi , Wi ∼ N (0, Ri )

I The least squares solution is the mean conditioned on the data

z0:k = E (Z0:k |d1:k ) .



Kalman smoother for 4DVAR increments

I The least squares solution is the maximum likelihood estimate

p (z0:k |d1:k ) = p (z0)
k

∏
i=1

p (zi |zi−1, di )

∝ p (z0)
k

∏
i=1

p (di |zi ) p (zi |zi−1)

∝ e−
1
2 ‖z0−zb‖2

B−1︸ ︷︷ ︸
∝ p(z0)

k

∏
i=1

e
− 1

2 ‖Hizi−di ‖2

R−1
i︸ ︷︷ ︸

∝ p(di |zi )

e
− 1

2 ‖zi−Mizi−1−mi‖2

Q−1
i︸ ︷︷ ︸

∝ p(zi |zi−1)

→ max
z0:k

by the Bayes theorem and the independence of the errors.

I All distributions in the linearized problem for the increments δxi are
gaussian ⇒

least squares solution = max of the joint pdf p (z0:k |d1:k )

= mean of the joint pdf p (z0:k |d1:k )



Kalman smoother
I Recall: δx0:k are the mean of the smoothing pdf p (δx0:k |d1:k ):

p (z0:k |d1:k )︸ ︷︷ ︸
joint analysis at

times 0 to k

∝ p (z0)
k

∏
i=1

p (di |zi )︸ ︷︷ ︸
Bayesian

update at i

p (zi |zi−1)︸ ︷︷ ︸
advance time
i−1 to i

I Rewrite as the recursion:

p (z0:k |d1:k )︸ ︷︷ ︸
joint analysis at

times 0 to k

= p (dk |zk )︸ ︷︷ ︸
Bayesian

update at k

p (zk |zk−1)︸ ︷︷ ︸
advance time
k−1 to k

p (z0:k−1|d1:k−1)︸ ︷︷ ︸
joint analysis at
times 0 to k−1

I Compare with the filter (sequential Bayesian estimation):

p (zk |d1:k )︸ ︷︷ ︸
analysis at

time k

∝ p (dk |zk )︸ ︷︷ ︸
Bayesian

update at k

p(zk |d1:k−1)=forecast at time k︷ ︸︸ ︷
p (zk |zk−1)︸ ︷︷ ︸
advance time
k−1 to k

p (zk−1|d1:k−1)︸ ︷︷ ︸
analysis at
time k−1

I Smoother = filter + update the history exactly the same way.



Ensemble Kalman smoother (EnKS)
Ensembles: UN = [u1, . . . , uN ]. VN ∼ N (m, A) is i.i.d. from N (m, A),
ZN
i |k is ensemble of states at time i , conditioned on all data up to time i .

Ensemble Kalman filter (EnKF): Initialize ZN
0|0 ∼ N (zb, B).

For i = 1, . . . , k, advance in time

ZN
i |i−1 = MiZ

N
i−1|i−1 + Vi , Vi ∼ N (mi , Qi )

followed by the analysis step

ZN
i |i = ZN

i |i−1 −PN
i HT

i (HiP
N
i HT

i + Ri )
−1(HiZ

N
i |i−1 −Di ), Di ∼ N (di , Ri )

PN
i =

1

N − 1
(ZN

i |i−1 − Z
N
i |i−1)(Z

N
i |i−1 − Z

N
i |i−1)

T (sample covariance)

So the analysis step makes linear combinations (transformation by a TN
i ):

ZN
i |i = ZN

i |i−1TN
i , TN

i ∈ RN×N .

EnKS = EnKF + transform the history exactly the same way:

ZN
0:i |i = ZN

0:i |i−1TN
i .



Derivative-free implementation of the EnKS - model

The linearized model Mi =M′
i (xi−1) occurs only in advancing the time

as action on the ensemble ZN = [zn] = [δxn]

Mi δx
n
i−1 +mi =M′

i (xi−1) δxni−1 +Mi (xi−1)− xi

Approximating by finite differences with a parameter τ > 0:

Mi δx
n
i−1 +mi ≈

Mi

(
xi−1 + τδxni−1

)
−Mi (xi−1)

τ
+Mi (xi−1)− xi

Needs N + 1 evaluations of Mi , at xi−1 and xi−1 + τδxni−1.

Accurate in the limit τ → 0.
For τ = 1, recover the nonlinear model: Mi

(
xi−1 + δxni−1

)
− xi



Derivative-free implementation of the EnKS - observation

The observation matrix occurs only in the action on the ensemble,

HiZ
N =

[
Hi δx

1, . . . , Hi δx
N
]

.

Approximating by finite differences with a parameter τ > 0:

Hi δx
n
i ≈

Hi

(
xi−1 + τδxni−1

)
−Hi (xi−1)

τ

Needs N + 1 evaluations of Hi , at xi−1 and xi−1 + τδxni−1.

Accurate in the limit τ → 0.

τ = 1 ⇒ becomes exactly the EnKS run on the nonlinear problem
⇒ EnKS independent of the point of linearization
⇒ no convergence of the 4DVAR iterations.
In our tests, τ = 0.1 seems to work well enough.



Tikhonov regularization and Levenberg-Marquardt method

I Gauss-Newton may not converge, even locally. Add a penalty
(Tikhonov regularization) to control the size of the increments δxi :

‖δx0 − zb‖2
B−1 +

k

∑
i=1

‖δxi −Mi δxi−1 −mi‖2
Q−1

i
+

k

∑
i=1

‖di −Hi δxi‖2
R−1
i

+ γ
k

∑
i=0

‖δxi‖2
S−1
i
→ min

δx0:k

I Becomes the Levenberg-Marquardt method, which is guaranteed to
converge for large enough γ.

I Implement the regularization as independent observations δxi ≈ 0
with error covariance Si : simply run the analysis step the second
time (Johns and Mandel, 2008). Here, this is statistically exact
because the distributions in the Kalman smoother are gaussian.



Convergence of the ensemble Kalman smoother
I Consider reference random vector Zi |k , the state at time i

conditioned exactly on all data up to time k .

I Algorithm (Kalman smoother on reference random vectors)
Initialize Z0|0 ∼ N (zb, B).
For i = 1, . . . , k , advance in time

Zi |i−1 = MiZ
N
i−1|i−1 + Vi , Vi ∼ N (mi , Qi )

followed by the analysis step with the exact covariance

Z0:|i = Z0:i |i−1 −P0:i ,iH
T
i (HiPiH

T
i + Ri )

−1(HiZ
n
i |i−1 −Di ),

where P0:i ,i = Cov(Z0:i |i−1,Zi |i−1), Di ∼ N (di , Ri )

I Theorem Zi |i has the filtering distribution p (zi |d1:i ).

I Theorem Z0:i |i has the smoothing distribution p (z0:i |d1:i ) .

I Theorem (Convergence of the ensemble Kalman smoother)

PN → Pi , Z j
i |i → Zi |i as N → ∞, for all i , in all Lp, 1 ≤ p < ∞.



Computational results
Lorenz 63 model

dx
dt = −σ(x − y)
dy
dt = ρx − y − xz

dz
dt = xy − βz



EnKS-4DVAR for Lorenz 63 model

Root mean square error of EnKS-4DVAR iterations over 50 timesteps

Iteration 1 2 3 4 5 6
RMSE 20.16 15.37 3.73 2.53 0.09 0.09



An example where Gauss-Newton does not converge

(x0 − 2)2 + (3 + x2
1 )

2 + 106(x0 − x1)
2 → min

4DVAR with xb = 2, B = I, M1 = I , H1(x) = x2, y1 = 3, Q1 = 10−6



Related work

I The equivalence between weak constraint 4DVAR and Kalman
smoothing is approximate for nonlinear problems, but still useful
(Fisher et al., 2005).

I Hamill and Snyder (2000) estimated backgroud covariance from
ensemble for 4DVAR.

I Gradient methods in the span of the ensemble for one analysis cycle
(i.e., 3DVAR) include Zupanski (2005), Sakov et al. (2012) (with
square root EnKF as a linear solver in Newton method), and
Bocquet and Sakov (2012), who added regularization and use
LETKF-like approach to minimize the nonlinear cost function over
linear combinations of the ensemble.

I Liu et al. (2008, 2009) combine ensembles with (strong constraint)
4DVAR and minimize in the observation space.

I Zhang et al. (2009) use EnKF to obtain the covariance for 4DVAR,
and 4DVAR to feed the mean analysis into EnKF.
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