Hybrid 4DVAR and nonlinear EnKS methods
 Parallel 4DVAR without tangents and adjoints

J. Mandel, S. Gratton, and E. Bergou
University of Colorado Denver, INP-ENSEEIHT, and CERFACS
Supported by Fondation STAE project ADTAO and NSF grants AGS-0835579 and DMS-1216481

AMS Annual Meeting, January 2013

Summary

Motivation

- 4DVAR sets up a very large nonlinear least squares problem.
- Expensive: iterations, each evaluating the model, tangent and adjoing operators, and solving large linear least squares.
- Extra code for tangent and adjoint operators.
- Iterations may not converge, not even locally.
- Need to parallelize.

Method

- Solve the linear least squares from 4DVAR by EnKS, naturally parallel over the ensemble members.
- Linear algebra glue is cheap, or use parallel dense libraries.
- Finite differences \Rightarrow no tangent and adjoint operators needed.
- Add Tikhonov regularization to the linear least squares \Rightarrow Levelberg-Marquardt method, guaranteed convergence.
- Cheap and simple implementation of Tikhonov regularization within EnKS as an additional observation.

Weak Constraint 4DVAR

- We want to determine $x_{0}, \ldots, x_{k}\left(x_{i}=\right.$ state at time $\left.i\right)$ approximately from model and observations (data)

$$
\begin{array}{rll}
x_{0} & \approx x_{\mathrm{b}} & \text { state at time } 0 \approx \text { the background } \\
x_{i} & \approx \mathcal{M}_{i}\left(x_{i-1}\right) & \\
\text { state evolution } \approx \text { by the model } \\
\mathcal{H}_{i}\left(x_{i}\right) & \approx y_{i} & \\
\text { value of observation operator } \approx \text { the data }
\end{array}
$$

- quantify " \approx " by covariances

$$
x_{0} \approx x_{\mathrm{b}} \Leftrightarrow\left\|x_{0}-x_{\mathrm{b}}\right\|_{\mathbf{B}^{-1}}^{2}=\left(x_{0}-x_{\mathrm{b}}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(x_{0}-x_{\mathrm{b}}\right) \approx 0 \text { etc. }
$$

- \Rightarrow nonlinear least squares problem

$$
\left\|x_{0}-x_{\mathrm{b}}\right\|_{\mathbf{B}^{-1}}^{2}+\sum_{i=1}^{k}\left\|x_{i}-\mathcal{M}_{i}\left(x_{i-1}\right)\right\|_{\mathbf{Q}_{i}^{-1}}^{2}+\sum_{i=1}^{k}\left\|y_{i}-\mathcal{H}_{i}\left(x_{i}\right)\right\|_{\mathbf{R}_{i}^{-1}}^{2} \rightarrow \min _{x_{0: k}}
$$

- Originally in 4DVAR, $x_{i}=\mathcal{M}_{i}\left(x_{i-1}\right)$. The weak constraint $x_{i} \approx \mathcal{M}_{i}\left(x_{i-1}\right)$ accounts for model error (Trémolet, 2007).

Incremental 4DVAR

- Incremental approach (Courtier et al., 1994): linearization

$$
\begin{aligned}
\mathcal{M}_{i}\left(x_{i-1}+\delta x_{i-1}\right) & \approx \mathcal{M}_{i}\left(x_{i-1}\right)+\mathcal{M}_{i}^{\prime}\left(x_{i-1}\right) \delta x_{i-1} \\
\mathcal{H}_{i}\left(x_{i}+\delta x_{i}\right) & \approx \mathcal{H}_{i}\left(x_{i}\right)+\mathcal{H}_{i}^{\prime}\left(\delta x_{i}\right)
\end{aligned}
$$

- gives the Gauss-Newton method (Bell, 1994), iterations

$$
x_{0: k} \leftarrow x_{0: k}+\delta x_{0: k}
$$

with the linear least squares problem for the increments $\delta x_{0: k}$

$$
\begin{aligned}
\left\|x_{0}+\delta x_{0}-x_{\mathrm{b}}\right\|_{\mathbf{B}^{-1}}^{2}+ & \sum_{i=1}^{k}\left\|x_{i}+\delta x_{i}-\mathcal{M}_{i}\left(x_{i-1}\right)-\mathcal{M}_{i}^{\prime}\left(x_{i-1}\right) \delta x_{i-1}\right\|_{\mathbf{Q}_{i}^{-1}}^{2} \\
& +\sum_{i=1}^{k}\left\|y_{i}-\mathcal{H}_{i}\left(x_{i}\right)-\mathcal{H}_{i}^{\prime}\left(x_{i}\right) \delta x_{i}\right\|_{\mathbf{R}_{i}^{-1}}^{2} \rightarrow \min _{\delta x_{0: k}}
\end{aligned}
$$

Linearized 4DVAR as Kalman smoother

Write the linear least squares problem for the increments $z_{0: k}=\delta x_{0: k}$ as

$$
\begin{gathered}
\left\|z_{0}-z_{\mathrm{b}}\right\|_{\mathbf{B}^{-1}}^{2}+\sum_{i=1}^{k}\left\|z_{i}-\mathbf{M}_{i} z_{i-1}-m_{i}\right\|_{\mathbf{Q}_{i}^{-1}}^{2}+\sum_{i=1}^{k}\left\|d_{i}-\mathbf{H}_{i} z_{i}\right\|_{\mathbf{R}_{i}^{-1}}^{2} \rightarrow \min _{z_{0: k}} \\
z_{\mathrm{b}}=x_{\mathrm{b}}-x_{0}, \quad m_{i}=\mathcal{M}_{i}\left(x_{i-1}\right)-x_{i}, \quad d_{i}=y_{i}-\mathcal{H}_{i}\left(x_{i}\right), \\
\mathbf{M}_{i}=\mathcal{M}_{i}^{\prime}\left(x_{i-1}\right), \quad \mathbf{H}_{i}=\mathcal{H}_{i}^{\prime}\left(x_{i}\right)
\end{gathered}
$$

- This is the same function as minimized in the Kalman smoother (Rauch et al., 1965; Bell, 1994)

$$
\begin{array}{rlrl}
Z_{0} & =z_{\mathrm{b}} & & +V_{0}, \\
& & V_{0} \sim N(0, \mathbf{B}) \\
Z_{i} & =\mathbf{M}_{i} Z_{i-1}+m_{i} & +V_{i}, & V_{i} \sim N\left(0, \mathbf{Q}_{i}\right) \\
d_{i} & =\mathbf{H}_{i} Z_{i} & & +W_{i},
\end{array} \quad \begin{aligned}
& W_{i} \sim N\left(0, \mathbf{R}_{i}\right)
\end{aligned}
$$

- The least squares solution is the mean conditioned on the data

$$
z_{0: k}=E\left(Z_{0: k} \mid d_{1: k}\right)
$$

Kalman smoother for 4DVAR increments

- The least squares solution is the maximum likelihood estimate

$$
\begin{aligned}
& p\left(z_{0: k} \mid d_{1: k}\right)=p\left(z_{0}\right) \prod_{i=1}^{k} p\left(z_{i} \mid z_{i-1}, d_{i}\right) \\
& \propto p\left(z_{0}\right) \prod_{i=1}^{k} p\left(d_{i} \mid z_{i}\right) p\left(z_{i} \mid z_{i-1}\right) \\
& \propto \underbrace{e^{-\frac{1}{2}\left\|z_{0}-z_{\mathrm{b}}\right\|_{\mathbf{B}^{-1}}^{2}}}_{\propto p\left(z_{0}\right)} \prod_{i=1}^{k} \underbrace{e^{-\frac{1}{2}\left\|\mathbf{H}_{i} z_{i}-d_{i}\right\|_{\mathbf{R}_{i}^{-1}}^{2}}}_{\propto p\left(d_{i} \mid z_{i}\right)} \underbrace{e^{-\frac{1}{2}\left\|z_{i}-\mathbf{M}_{i} z_{i-1}-m_{i}\right\|_{\mathbf{Q}_{i}^{-1}}^{2}}}_{\propto p\left(z_{i} \mid z_{i-1}\right)} \rightarrow \max _{z_{0: k}}
\end{aligned}
$$

by the Bayes theorem and the independence of the errors.

- All distributions in the linearized problem for the increments δx_{i} are gaussian \Rightarrow

$$
\begin{aligned}
\text { least squares solution } & =\text { max of the joint pdf } p\left(z_{0: k} \mid d_{1: k}\right) \\
& =\text { mean of the joint pdf } p\left(z_{0: k} \mid d_{1: k}\right)
\end{aligned}
$$

Kalman smoother

- Recall: $\delta x_{0: k}$ are the mean of the smoothing $\operatorname{pdf} p\left(\delta x_{0: k} \mid d_{1: k}\right)$:

$$
\underbrace{p\left(z_{0: k} \mid d_{1: k}\right)}_{\begin{array}{c}
\text { joint analysis at } \\
\text { times } 0 \text { to } k
\end{array}} \propto p\left(z_{0}\right) \prod_{i=1}^{k} \underbrace{p\left(d_{i} \mid z_{i}\right)}_{\begin{array}{c}
\text { Bayesian } \\
\text { update at } i
\end{array}} \underbrace{p\left(z_{i} \mid z_{i-1}\right)}_{\begin{array}{c}
\text { advance time } \\
i-1 \text { to } i
\end{array}}
$$

- Rewrite as the recursion:

$$
\underbrace{p\left(z_{0: k} \mid d_{1: k}\right)}_{\begin{array}{c}
\text { joint analysis at } \\
\text { times } 0 \text { to } k
\end{array}}=\underbrace{p\left(d_{k} \mid z_{k}\right)}_{\begin{array}{c}
\text { Bayesian } \\
\text { update at } k
\end{array}} \underbrace{p\left(z_{k} \mid z_{k-1}\right)}_{\begin{array}{c}
\text { advance time } \\
k-1 \text { to } k
\end{array}} \underbrace{p\left(z_{0: k-1} \mid d_{1: k-1)}\right)}_{\begin{array}{c}
\text { joint analysis at } \\
\text { times } 0 \text { to } k-1
\end{array}}
$$

- Compare with the filter (sequential Bayesian estimation):

$$
\underbrace{p\left(z_{k} \mid d_{1: k}\right)}_{\begin{array}{c}
\text { analysis at } \\
\text { time } k
\end{array}} \propto \underbrace{p\left(d_{k} \mid z_{k}\right)}_{\begin{array}{c}
\text { Bayesian } \\
\text { update at } k
\end{array}} \underbrace{p\left(z_{k} \mid d_{1: k-1}\right)=\text { forecast at time } k}_{\begin{array}{c}
\text { advance time } \\
k-1 \text { to } k
\end{array}} \underbrace{p\left(z_{k} \mid z_{k-1}\right)}_{\begin{array}{c}
\text { analysis at } \\
\text { time } k-1
\end{array}} \underbrace{p\left(z_{k-1} \mid d_{1: k-1}\right)}
$$

- Smoother $=$ filter + update the history exactly the same way.

Ensemble Kalman smoother (EnKS)

Ensembles: $U^{N}=\left[u^{1}, \ldots, u^{N}\right] . V^{N} \sim N(m, \mathbf{A})$ is i.i.d. from $N(m, \mathbf{A})$, $Z_{i \mid k}^{N}$ is ensemble of states at time i, conditioned on all data up to time i.
Ensemble Kalman filter (EnKF): Initialize $Z_{0 \mid 0}^{N} \sim N\left(z_{b}, B\right)$.
For $i=1, \ldots, k$, advance in time

$$
Z_{i \mid i-1}^{N}=\mathbf{M}_{i} Z_{i-1 \mid i-1}^{N}+V_{i}, \quad V_{i} \sim N\left(m_{i}, \mathbf{Q}_{i}\right)
$$

followed by the analysis step

$$
\begin{gathered}
Z_{i \mid i}^{N}=Z_{i \mid i-1}^{N}-\mathbf{P}_{i}^{N} \mathbf{H}_{i}^{\mathrm{T}}\left(\mathbf{H}_{i} \mathbf{P}_{i}^{N} \mathbf{H}_{i}^{\mathrm{T}}+\mathbf{R}_{i}\right)^{-1}\left(\mathbf{H}_{i} Z_{i \mid i-1}^{N}-D_{i}\right), \quad D_{i} \sim N\left(d_{i}, \mathbf{R}_{i}\right) \\
\mathbf{P}_{i}^{N}=\frac{1}{N-1}\left(Z_{i \mid i-1}^{N}-\bar{Z}_{i \mid i-1}^{N}\right)\left(Z_{i \mid i-1}^{N}-\bar{Z}_{i \mid i-1}^{N}\right)^{\mathrm{T}} \quad(\text { sample covariance })
\end{gathered}
$$

So the analysis step makes linear combinations (transformation by a \mathbf{T}_{i}^{N}):

$$
Z_{i \mid i}^{N}=Z_{i \mid i-1}^{N} \mathbf{T}_{i}^{N}, \quad \mathbf{T}_{i}^{N} \in \mathbb{R}^{N \times N} .
$$

EnKS $=$ EnKF + transform the history exactly the same way:

$$
z_{0: i \mid i}^{N}=Z_{0: i \mid i-1}^{N} \mathbf{T}_{i}^{N}
$$

Derivative-free implementation of the EnKS - model

The linearized model $\mathbf{M}_{i}=\mathcal{M}_{i}^{\prime}\left(x_{i-1}\right)$ occurs only in advancing the time as action on the ensemble $Z^{N}=\left[z^{n}\right]=\left[\delta x^{n}\right]$

$$
\mathbf{M}_{i} \delta x_{i-1}^{n}+m_{i}=\mathcal{M}_{i}^{\prime}\left(x_{i-1}\right) \delta x_{i-1}^{n}+\mathcal{M}_{i}\left(x_{i-1}\right)-x_{i}
$$

Approximating by finite differences with a parameter $\tau>0$:

$$
\mathbf{M}_{i} \delta x_{i-1}^{n}+m_{i} \approx \frac{\mathcal{M}_{i}\left(x_{i-1}+\tau \delta x_{i-1}^{n}\right)-\mathcal{M}_{i}\left(x_{i-1}\right)}{\tau}+\mathcal{M}_{i}\left(x_{i-1}\right)-x_{i}
$$

Needs $N+1$ evaluations of \mathcal{M}_{i}, at x_{i-1} and $x_{i-1}+\tau \delta x_{i-1}^{n}$.
Accurate in the limit $\tau \rightarrow 0$.
For $\tau=1$, recover the nonlinear model: $\mathcal{M}_{i}\left(x_{i-1}+\delta x_{i-1}^{n}\right)-x_{i}$

Derivative-free implementation of the EnKS - observation

The observation matrix occurs only in the action on the ensemble,

$$
\mathbf{H}_{i} Z^{N}=\left[\mathbf{H}_{i} \delta x^{1}, \ldots, \mathbf{H}_{i} \delta x^{N}\right] .
$$

Approximating by finite differences with a parameter $\tau>0$:

$$
\mathbf{H}_{i} \delta x_{i}^{n} \approx \frac{\mathcal{H}_{i}\left(x_{i-1}+\tau \delta x_{i-1}^{n}\right)-\mathcal{H}_{i}\left(x_{i-1}\right)}{\tau}
$$

Needs $N+1$ evaluations of \mathcal{H}_{i}, at x_{i-1} and $x_{i-1}+\tau \delta x_{i-1}^{n}$.
Accurate in the limit $\tau \rightarrow 0$.
$\tau=1 \Rightarrow$ becomes exactly the EnKS run on the nonlinear problem
\Rightarrow EnKS independent of the point of linearization
\Rightarrow no convergence of the 4DVAR iterations.
In our tests, $\tau=0.1$ seems to work well enough.

Tikhonov regularization and Levenberg-Marquardt method

- Gauss-Newton may not converge, even locally. Add a penalty (Tikhonov regularization) to control the size of the increments δx_{i} :

$$
\begin{aligned}
\left\|\delta x_{0}-z_{\mathbf{b}}\right\|_{\mathbf{B}^{-1}}^{2}+ & \sum_{i=1}^{k}\left\|\delta x_{i}-\mathbf{M}_{i} \delta x_{i-1}-m_{i}\right\|_{\mathbf{Q}_{i}^{-1}}^{2}+\sum_{i=1}^{k}\left\|d_{i}-\mathbf{H}_{i} \delta x_{i}\right\|_{\mathbf{R}_{i}^{-1}}^{2} \\
& +\gamma \sum_{i=0}^{k}\left\|\delta x_{i}\right\|_{\mathbf{S}_{i}^{-1}}^{2} \rightarrow \min _{\delta x_{0: k}}
\end{aligned}
$$

- Becomes the Levenberg-Marquardt method, which is guaranteed to converge for large enough γ.
- Implement the regularization as independent observations $\delta x_{i} \approx 0$ with error covariance \mathbf{S}_{i} : simply run the analysis step the second time (Johns and Mandel, 2008). Here, this is statistically exact because the distributions in the Kalman smoother are gaussian.

Convergence of the ensemble Kalman smoother

- Consider reference random vector $Z_{i \mid k}$, the state at time i conditioned exactly on all data up to time k.
- Algorithm (Kalman smoother on reference random vectors) Initialize $Z_{0 \mid 0} \sim N\left(z_{\mathrm{b}}, \mathbf{B}\right)$.
For $i=1, \ldots, k$, advance in time

$$
Z_{i \mid i-1}=\mathbf{M}_{i} Z_{i-1 \mid i-1}^{N}+V_{i}, \quad V_{i} \sim N\left(m_{i}, \mathbf{Q}_{i}\right)
$$

followed by the analysis step with the exact covariance

$$
\begin{array}{r}
Z_{0: \mid i}= \\
Z_{0: i \mid i-1}-\mathbf{P}_{0: i, i} \mathbf{H}_{i}^{\mathrm{T}}\left(\mathbf{H}_{i} \mathbf{P}_{i} \mathbf{H}_{i}^{\mathrm{T}}+\mathbf{R}_{i}\right)^{-1}\left(\mathbf{H}_{i} Z_{i \mid i-1}^{n}-D_{i}\right), \\
\quad \text { where } \mathbf{P}_{0: i, i}=\operatorname{Cov}\left(Z_{0: i \mid i-1}, Z_{i \mid i-1}\right), \quad D_{i} \sim N\left(d_{i}, \mathbf{R}_{i}\right)
\end{array}
$$

- Theorem $Z_{i \mid i}$ has the filtering distribution $p\left(z_{i} \mid d_{1: i}\right)$.
- Theorem $Z_{0: i \mid i}$ has the smoothing distribution $p\left(z_{0: i} \mid d_{1: i}\right)$.
- Theorem (Convergence of the ensemble Kalman smoother)

$$
\mathbf{P}^{N} \rightarrow \mathbf{P}_{i}, \quad Z_{i \mid i}^{j} \rightarrow Z_{i \mid i} \text { as } N \rightarrow \infty, \text { for all } i \text {, in all } L^{p}, 1 \leq p<\infty .
$$

Computational results

Lorenz 63 model

$$
\begin{gathered}
\frac{d x}{d t}=-\sigma(x-y) \\
\frac{d y}{d t}=\rho x-y-x z \\
\frac{d z}{d t}=x y-\beta z
\end{gathered}
$$

EnKS-4DVAR for Lorenz 63 model

Root mean square error of EnKS-4DVAR iterations over 50 timesteps

Iteration	1	2	3	4	5	6
RMSE	20.16	15.37	3.73	2.53	0.09	0.09

An example where Gauss-Newton does not converge

$$
\left(x_{0}-2\right)^{2}+\left(3+x_{1}^{2}\right)^{2}+10^{6}\left(x_{0}-x_{1}\right)^{2} \rightarrow \min
$$

4DVAR with $x_{b}=2, \mathbf{B}=\mathbf{I}, M_{1}=I, \mathcal{H}_{1}(x)=x^{2}, y_{1}=3, \mathbf{Q}_{1}=10^{-6}$

Related work

- The equivalence between weak constraint 4DVAR and Kalman smoothing is approximate for nonlinear problems, but still useful (Fisher et al., 2005).
- Hamill and Snyder (2000) estimated backgroud covariance from ensemble for 4DVAR.
- Gradient methods in the span of the ensemble for one analysis cycle (i.e., 3DVAR) include Zupanski (2005), Sakov et al. (2012) (with square root EnKF as a linear solver in Newton method), and Bocquet and Sakov (2012), who added regularization and use LETKF-like approach to minimize the nonlinear cost function over linear combinations of the ensemble.
- Liu et al. $(2008,2009)$ combine ensembles with (strong constraint) 4DVAR and minimize in the observation space.
- Zhang et al. (2009) use EnKF to obtain the covariance for 4DVAR, and 4DVAR to feed the mean analysis into EnKF.

References

B. Bell. The iterated Kalman smoother as a Gauss-Newton method. SIAM Journal on Optimization, 4(3):626-636, 1994. doi: 10.1137/0804035.
M. Bocquet and P. Sakov. Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Processes in Geophysics, 19(3): 383-399, 2012. doi: 10.5194/npg-19-383-2012.
P. Courtier, J.-N. Thépaut, and A. Hollingsworth. A strategy for operational implementation of 4d-var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society, 120(519):1367-1387, 1994. ISSN 1477-870X. doi: 10.1002/qj. 49712051912.
M. Fisher, M. Leutbecher, and G. A. Kelly. On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613, Part c):3235-3246, OCT 2005. ISSN 0035-9009. doi: \{10.1256/qj.04.142\}.
T. M. Hamill and C. Snyder. A hybrid ensemble Kalman filter-3D variational analysis scheme. Monthly Weather Review, 128(8):2905-2919, 2000. doi: 10.1175/1520-0493(2000)128 (2905:AHEKFV $\rangle 2.0 . C O ; 2$.
C. J. Johns and J. Mandel. A two-stage ensemble Kalman filter for smooth data assimilation. Environmental and Ecological Statistics, 15:101-110, 2008. doi: 10.1007/s10651-007-0033-0.
C. Liu, Q. Xiao, and B. Wang. An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Monthly Weather Review, 136(9):3363-3373, 2008. doi: 10.1175/2008MWR2312.1.
C. Liu, Q. Xiao, and B. Wang. An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with Advanced Research WRF (ARW). Monthly Weather Review, 137(5):1687-1704, 2009. doi: 10.1175/2008MWR2699.1.
H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8):1445-1450, 1965.
P. Sakov, D. S. Oliver, and L. Bertino. An iterative EnKF for strongly nonlinear systems. Monthly Weather Review, 140(6):1988-2004, 2012. doi: 10.1175/MWR-D-11-00176.1.
Y. Trémolet. Model-error estimation in 4D-Var. Q. J. Royal Meteorological Soc., 133 (626):1267-1280, 2007. ISSN 1477-870X. doi: 10.1002/qj.94.
F. Zhang, M. Zhang, and J. Hansen. Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Advances in Atmospheric Sciences, 26(1):1-8, 2009. doi: 10.1007/s00376-009-0001-8.
M. Zupanski. Maximum likelihood ensemble filter: Theoretical aspects. Monthly Weather Review, 133(6):1710-1726, 2013/01/01 2005. doi: 10.1175/MWR2946.1.

