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Motivation

Satellite remote sensing offers new and unique insights for the study
of cloud and precipitation systems. A contemporary instrument for cloud
mapping is the Cloud Profiing Radar (CPR), which is the first
spaceborne cloud radar onboard NASA's CloudSat satellite (
http://cloudsat.atmos.colostate.edu/). CPR operates at W-band (94
GHz) and provides good sensitivity for measuring the vertical structure
of cloud liquid/solid water distribution. On the ground, the Next-
Generation Radar (NEXRAD) network has proven its value for nation-
wide weather observations. An advanced quantitative precipitation
estimation (QPE) system based on NEXRAD is NOAA's National
Mosaic and Multisensor QPE system (NMQ, http://nmg.ou.edu). Since
June 2006, NMQ (Q2) has been generating high-resolution, national 3-
D reflectivity mosaics (31 vertical levels) and a suite of severe weather
and QPE products at a 1-km horizontal resolution and 5-min update
cycle. The polarimetric NMQ (Q3) will be available in 2013. These
products are being merged with CPR observations to yield better
depictions of storm structures and microphysical processes.

Mixed-phase clouds account for the majority of convective
precipitation and concomitant severe weather over continental regions.
The understanding of icing conditions in the mixed-phase clouds is
Important to estimate and forecast icing hazards with radar
observations. This issue is especially critical for aviation and ground
transportation. The current study investigates the potential of detection
and identification of supercooled liquid drops (SLD)/freezing drizzle
(FZ), which are believed to be responsible for hazardous aircraft icing,
using observations from spaceborne and ground-based radars.
Research products from the CloudSat mission and NMQ, including
vertical profiles of reflectivity, liquid water content, characteristic size,
temperature, cloud type and phase, are utilized to assist with the
discrimination of SLD/FZ from other hydrometeors. The combination of
CloudSat and NMQ will provide great potential to enhance the
hydrometeor classification in the sub-freezing region.
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Figure (a) horizontal and vertical cross sections from NMQ-Q2 3D reflectivity mosaic; (b) NMQ-Q2
precipitation rates; (c) spatial bias distribution based on gauge measurements; (d) research product
in NMQ-Q3: polarimetric hydrometeor classification.
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2 CIoudSat CPR

Granules, Profiles and Bins : CPR footprint & granule size
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3. Methodology

* Fuzzy-logic Enhanced Hydrometeor Classification
Algorithm (EHCA)
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Defuzzification

The well-known hydrometeor classification algorithm (HCA) was
developed by NSSL specifically for the polarimetric WSR-88D (Park et
al. 2009). However, HCA can not discriminate SLD/FZ due to the
similarity of S-band radar signals between small, spherical drizzle
hydrometeors and light snow.

The proposed EHCA integrates CloudSat products, which provide
great potential to improve hydrometeor classification, especially for the
region above the freezing level. Liquid drops and ice particles have
distinct scattering characteristics at S- and W-band frequencies. In
addition, small cloud/precipitation particles can be well detected by
CloudSat. Therefore, the use of CloudSat (and combined CALIOP) data
will help to identify species (e.g., SLD and FZ) that S-band radar cannot
detect. We propose to develop EHCA using CloudSat and NMQ-Q3
datasets.

The inputs applied by EHCA include polarimetric variables (Z,,
Zpr: Phyvs Kgp), texture information (SD[Z,], SD[®,.]), profile of
temperature, humidity, cloud classification, ice/liquid phase, and ice/
liquid water content and distribution. EHCA is expected to produce new
category SLD/FZ. Moreover, DS, WS, GR, CR, and LR will be improved
compared to original HCA.

The development and/or modification of membership functions for
corresponding categories will be key works for the proposed EHCA. In
addition, the validation of EHCA results will be another important issue.
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4. Informative Datasets

CloudSat science team has generated products which help the
analysis of cloud/precipitation processes. Currently the NMQ (Q2) only
provides the products based on single-pol data. The polarimetric-radar-
based products will be available in NMQ-Q3 system, which will be
constructed after the upgrade of NEXRAD.

The right figure shows NMQ hybrid
scan reflectivity overlapped with
CloudSat track (dashed line) for event
18 January 2009, ~1845 UTC. The
following figures show the vertical

profile of products from NMQ and
CloudSat along the dashed line.
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5. Research Plan
5.1. Investigate scattering characteristics

(a) supercooled water drops (temperature -5
OC)

(b) dry graupel or snow aggregate (density
0.5gm?3)

(c) wet graupel or snow aggregate
(density=0.5 g m3, melting ratio=10%)

(d) dry ice aggregate or hail (density 0.917 g
m-3)

(e) wet ice aggregate or hail (density 0.917 g
m-3, melting ratio=10%)
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This work involves the simulation based on the scattering theory.
The scattering characteristics will give a guide for evaluating radar
reflectivity for different hydrometeors.

5.2. Study multi-frequency and polarimetric signatures in
the sub-freezing region.

This work will statistically analyze CloudSat and NMQ data with
co-locations. Radar reflectivity, liquid water content, characteristic size
and other quantities are quantified/linked together for various scenarios
(frequency, hydrometeor type, and PSD). Corresponding empirical
relations and/or physical constraints will be derived if they are available.
Statistics of these quantities are also done for various categories.
Emphasis will be put on small water drops (supercooled, size <1 mm),
ice crystals (plate and column), and dry/wet graupel/aggregate/hail.

5.3. Construct/modify membership functions.

Based on the study of microphysical signatures and statistics of
state variables, determine the critical range of membership functions for
various classification categories. Necessary adjustments will be made
through the diagnosis of the phase of hydrometeors, which can be
pursued through a quantitative comparison of multi-frequency radar
observations given a classified hydrometeor type.

5.4. Validate EHCA using multi-source observations.

There are two approaches for the validation of EHCA although
challenging. The primary one is the cross-verification with multi-system
data/products. Quantitative comparison of multi-frequency reflectivity as
well as microphysical quantities, such as ice/liquid liquid water content,
characteristic size, number concentration, and effective radius, will
assess the classification result for the given hydrometeor type. On the
other hand, all the available sources of direct verification, which are
supported by NASA, NOAA, NWC, FAA or other agencies, will be
considered. For example, we will take advantage of field experiments
collecting in-site hydrometeor data within clouds (e.g., NASA's filed
campaigns; weather balloons launched by NSSL, FAA icing condition
report). We will also utilize surface station reports from the NWS.



