Exploration of Global Model Predictions of a High Impact Winter Weather Event Using the THORPEX Interactive Grand Global Ensemble (TIGGE)

Daniel S. Russell1,2, Stacey M. Hitchcock1, David B. Parsons3, Nathan N. New1,
1School of Meteorology, University of Oklahoma, Norman, Oklahoma
2Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, California

Goals:
• Explore the performance of global numerical weather prediction models for a winter storm that occurred on January 28-30, 2010 and contained various types of winter precipitation.
• Focus on the ability of these global ensembles to improve lead times.

Introduction:
Winter storms are high impact events that have costly consequences for power companies, agriculture, industry, businesses, schools, and motorists.
• January 28-30, 2010 winter storm caused nearly 200,000 homes and businesses to lose power (NWS Tulsa, 2010).
• County infrastructure as well as rural electric losses totaled more than $69 million (Oklahoma Dep., 2010).

TIGGE:
• Comprised of 10 different ensemble centers across the world accumulating approximately 500 forecasts per day.
• Control, deterministic, and perturbed model runs from each center can be gathered up to 384 hours in advance (Bougeault et al., 2009).
• In the past, use of multiple ensembles has been limited due to differences in model resolution, ensemble center accessibility, file format, and meteorological parameters.
• TIGGE archive sets a standard for comparison between global ensembles.

Methods:
• Downloaded deterministic forecasts for surface temperature, total precipitation, and 850 mb temperature, from United Kingdom Met Office (UKMO), National Center for Environmental Prediction (NCEP), and the European Centre for Medium-Range Weather Forecasts (ECMWF) all on the same model grid and resolution.
• Created a binary indicator set equal to 1 for each grid point and ensemble member that had surface temperature less than 0°C, 850 millibar temperature greater than 0°C and precipitation greater than 5 kg m⁻² over the six hour forecast. If any conditions were not met, the binary indicator was set equal to 0.
• Added the binary indicator for all ensembles and divided by the total number of ensemble members from the three centers (93 members) to create a “combination forecast” which is defined by the percentage of ensemble members meeting the arbitrary thresholds set within the binary indicator.
• Created “combination forecasts” for ECMWF, NCEP, UKMO individually to determine the performance of each ensemble center.
• Created contoured maps for the “combination forecasts” showcasing highest probability for freezing rain.
• Combined HPC Storm Summary reports to create plots of accumulations for freezing rain, snow and sleet in order to determine locations of greatest freezing precipitation accumulations.

Results:

Conclusions:
• “Combination forecast” showed 30% of ensemble members had characteristics indicative of a freezing rain event four days before the event (Figure 2).
• Agreement between the ensemble members increased as lead time decreased.
• For much of this storm, the ECMWF showed greater agreement of ensemble members for a freezing rain event earlier than the NCEP and the UKMO (Figure 3).
• Surface temperatures were the most uncertain in the days preceding the event and prevented greater agreement for the “combination forecast” up until the day of the event.
• Individual “combination forecasts” displayed scenarios where an ensemble center would be strong in one region with agreement for the parameters predicting freezing rain, while weak in another region (Figure 4, 5).

Acknowledgments:
A special thanks goes out to our mentor, Dr. David Parsons, for guiding us and introducing us to the TIGGE archive. Dr. Steven Caracena was instrumental in the project by helping convert the TIGGE files into Matlab capable format and he helped guide our project in the right direction during the beginning stages. We would also like to express our gratitude to Dr. Michael Richman who helped us with the statistical verification of the event. Another thanks goes to Dr. Jeff Husa who graciously allowed us to use his pictures of the winter storm event.

References:

Figure 1: Freezing rain (left) and snow (right) accumulations using data from the HPC event summaries. Freezing rain shading and contours represent every eighth of an inch (Hydrometeorological, 2010). Snow shading and contours represent every two inches. City Shapefile Source: AHIPS Map Database, Cities, 2012.

Figure 2: “Combination forecast” for Oklahoma region beginning with 4 day forecast (top row), two day forecast (middle row) and same day forecast (bottom row)

Figure 3: “Combination forecast” (top left) for Oklahoma region three days before storm. Percentages of ensembles meeting the binary indicator are contoured.

Figure 4: “Combination forecast” (top left) for Tennessee and Arkansas region two days before storm. Percentages of ensembles meeting the binary indicator for the ECMWF (top right), NCEP (bottom left), and UKMO (bottom right) for same time.

Figure 5: “Combination forecast” (top left) for North Carolina region three days before storm. Percentages of ensembles meeting the binary indicator for the ECMWF (top right), NCEP (bottom left), and UKMO (bottom right) for same time.