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1. Background 

Reference data 

Ø  GPCP monthly/pentad/daily data 

Ø  CMAP monthly data 

Ø  NOAA/NCDC ERSST v3b monthly SST data 

Reanalysis 

Ø  ECWMF ERA-Interim Reanalysis 

IPCC Models 

Ø  11 models used in this study (A CCSM3, B GFDL-CM3, C GFDL-ESM2M, D GISS-

E2H, E GISS-E2R, F HadCM3, G HadGEM2-CC, H HadGEM2-ES, I MPI-ESM, J 

IPSL, K INM-CM4) 

Ø  Historical period: 1950-2005 to construct SST indices, 1979-2005 for other 

variables 

    The end of the 21st century: 2073-2099 

Ø  Moisture convergence is calculated from the water budget. (Trenberth et al. 2007) 

Ø  Some models lack of evapotranspiration which can be calculated from its 

relationship with surface latent heat flux 

Ø  The root-mean square error (RMSE) is used to quantify the model performance 

and rank the models. (Gleckler et al. 2008) 

Ø  A Bayesian method is employed to weight the models. The posterior is based on 

assessments of the mean (step 1) and the distribution (step 2).  (Jupp et al. 2010; 

Murphy et al. 2004) 
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Ø  The models adequately simulate the annual cycles in Sama and SAMS, but have 

a large range of performance in Nama and NWama. Most models underestimate 

rainfall and the dry biases are strongest in southern tropical South America. 

Ø  Excessive surface solar radiation, strong ITCZs in adjacent oceans and an 

overestimate of upper tropospheric westerly winds appear to cause the dry 

biases in those models. 

Ø  HadGEM2-ES outperforms other models in most variables especially surface 

conditions and atmospheric circulations in all the four regions. 

Ø  MME has a dry bias over the Amazon, but WGT corrects the biases. The 

magnitude of drying is about 1 mm/d larger by WGT than MME at the end of the 

21st century, mainly over the eastern Amazon. 
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Figure 8. (a) Rainfall climatology in GPCP; (b) 

The difference between multi-model ensemble 

(MME) and GPCP; (c) The difference between 

weighted MME (WGT) and GPCP; (d) The 

difference between RCP8.5 and historical from 

MME; (e) The difference between RCP8.5 and 

historical from WGT.  
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Figure 1. Map of the study regions. 
 

Ø  Southern Amazon  

            (Sama, 70W-50W, 15S-5S) 

Ø  Northern Amazon  

            (Nama, 70W-55W, 5S-5N) 

Ø  Northwestern Amazon  

            (Nwama, 75W-60W, 10S-5N) 

Ø  South American Monsoon System region  

            (SAMS, 60W-45W, 17.5S-5S) 

Ø  CMIP3 models were shown to have highly variable biases in Amazonia 

precipitation and its seasonality (Li et al. 2006; Vera et al. 2006). 

Ø  Since IPCC AR4, our understanding on what control climatology and variability of 

Amazonian rainfall has advanced significantly. It has been established that SST 

anomalies over the adjacent tropical oceans are the primary forcing for drought 

and extreme events in some part of Amazonian basin (Doi et al. 2012; Liebmann 

and Marengo 2001), through their impacts on atmospheric circulation patterns and 

moisture transport (Wang and Fu 2002; Fu et al. 1999).  Surface soil moisture and 

vegetation feedbacks, as well as land, regulate rainfall variability by altering the 

surface Bowen ratio and buoyancy of air in the boundary layer (Fu and Li 2004; 

Nepstad et al. 1999; Lee et al. 2011). 

Ø  This work determines what biases in Amazonian rainfall still remain and what are 

the possible causes. 

Figure 2. Seasonal mean of total precipitation. (A CCSM3, B GFDL-CM3, C GFDL-ESM2M, D GISS-E2H, E GISS-E2R, F HadCM3, G HadGEM2-CC, H 

HadGEM2-ES, I MPI-ESM, J IPSL, K INM-CM4) 

Figure 3. Distribution of pentad precipitation in the four regions.  

Figure 4. Taylor diagram quantifying the correspondence between the simulated and observed domain-

averaged annual cycle of precipitation. The markers are denoted in the top left panel.  

Figure 5. Spatial mean surface net radiation.  The grey bars represent the standard deviation.  

Figure 6. Scatter plot of ET and moisture convergence in  SON. 

Precipitation is color shaded. The unit for ET, MC and Pr is mm d-1. 

Pentagram represents the reference. (A CCSM3, B GFDL-CM3, C 

GFDL-ESM2M, D GISS-E2H, E GISS-E2R, F HadCM3, G 

HadGEM2-CC, H HadGEM2-ES, I MPI-ESM, J IPSL, K INM-CM4)  

Figure 7. RMSE ranking of precipitation, U850, V850, GH500, U200, Latent heat, sensible heat, net 

solar radiation, moisture convergence, Nino3, Nino4, AMO, tropical Atlantic SST Gradient. The cross 

signs indicate the total water vapor change is not provided as an output variable by HadCM3.  


