

Climatological Assessment of Aircraft Icing Conditions and Associated

Cloud Properties Derived from Satellite Data and Icing PIREPS

Cecilia Fleeger¹, William L. Smith, Jr.², Patrick Minnis², Douglas Spangenberg¹, Rabindra Palikonda¹, Fu-Lung Chang¹ ¹ Science Systems and Applications, Inc, Hampton VA ²NASA Langley Research Center, Hampton VA

Objectives

This poster describes the climatology of icing conditions derived from satellite data in single (SL) and multi-layered (ML) cloud system over Continent United States (CONUS). Specific questions being addressed include:

(1) Distribution of annual icing occurrences over CONUS: (2) Seasonal variations of icing frequencies and associated cloud conditions:

(3) Quantify the accuracy and utility of the satellite icing analyses by comparing

> Satellite icing detection vs. icing PIREPS;

> Icing climatology based on satellite observations (FIT algorithm) and balloonborne soundings (CIP algorithm); > Icing boundaries detected by satellite vs. PIREPS icing altitude:

(4) To what extent can ML icing detection increase the ability to detect icing under the ice cloud top condition.

FIT Algorithm and Performance

The FIT algorithm is developed for application to cloud parameters retrieved from operational satellite data, such as MODIS, GOES Imager, SEVIRI and GOES-R.

Probability of flight-icing

Icing vertical boundaries

Re = 5 µn

Re = 16 μr

400 600 800

SLWP (gm⁻²)

Fig. 2 PIREPS icing intensity

weakly depends on the

effective radius

Icing intensity

Fig. 1 PIREPS icing intensity is linearly related to super-cooled liquid water path (SLWP).

Validation (Table 1).

- icing PIREPS (2008-2010 winters)
- NASA Icing Remote Sensing System (NIRSS, 2008-2010)
- Topospheric Airborne Meteorological Data Reporting (TAMDAR, 2005)

Table. 1 FIT algorithm performance for unobscured cloud conditions

Dataset	Day/night	PODY (%)	Accuracy (%)	Intensity accuracy (%)
PIREPS	Night	64	63	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
PIREPS	Day (all)	98	93	58
PIREPS	Day (filtered)	-	-	67
NIRSS	Day	100	90	77
TAMDAR	Day	87	53	· · · · · · · · · · · · · · · · · · ·

Data Processing and Methods

We calculated the annual mean seasonal mean and monthly mean of super-cooled liquid water, icing vertical boundaries, and icing frequencies.

- Icing frequencies based on FIT: > Two major icing centers develop in the fall and reaches maxima in the winter
- > Two icing maxima retreat to north in the spring and reaches minimum in the summe
- > Have very similar pattern comparing to icing frequencies based on Current Icing Potential (CIP) algorithm

Annual Icing Climatology

Fig.3 Annual icing frequencies (%) using (a) single layer icing product; (b) single layer and multi-layer combined icing product. (c) Icing frequencies based on CIP [Bernstein et al. 2007]. (d) Mean SLWP.

There are two major icing maxima over CONUS (Fig.3b)

> FIT icing reveals a third icing maxima at the junction of Idaho and

Icing FIT vs. PIREPS

PIREPS icing is biased high around the major airports (black dots) and flight paths.

Icing Boundary FIT vs. PIREPS

Conclusions

Using the Flight Icing Threat (FIT) algorithm developed for satellite applications,

>We are first time enabled to study icing climatology over the CONUS domain with satellite observations in high spatial and temporal resolutions:

>One year of GOES icing data and associated cloud parameters are used to create geographic and altitude distributions annually and seasonally:

>Three months of GOES Single Layer (ML) icing are compared to icing PIREPS;

>The comparison of satellite-based icing climatology and a previous study is discussed

The results extended our understanding of the benefits and limitations associated with current satellite-based icing diagnoses, and will help guide future improvements, particularly for advanced satellite sensors, such as the GOFS-R Advanced Baseline Imager, scheduled for operational use in 2017.

References

- conditions aloft, including supercooled large drops. Part I: Canada and the Continental United States. J. Appl. Meteor. Climatol, 46, 1857 1878.

Acknowledaments

This research was supported by the NASA Clouds and the Earth's Radiant Energy System program and by the NOAA GOES-R program.

Winter

Able to capture fine features of icing distribution with much higher resolution

Mean SLWP:

> Reaches local maximum in the winter and minimum in the summer

Frequencies for the second sec

cing

SI WP

