#757

The aerosol-induced impacts on South Asian monsoon estimated from Fengyun-2 observations of the cloud effective particle radius Hiroya Endo*(endo_h@storm.dpri.kyoto-u.ac.jp), Yuichiro Oku, Weiqiang Ma, and Hirohiko Ishikawa

Introduction

Recent studies have shown that a marked increase of absorbing aerosols in South Asia has altered the characteristic of Asian monsoon (Ramanathan et al., 2005; Lau et al., 2006). However, it is not easy to explain the aerosol effects on Asian monsoon water cycle in total, because it depends on many factors; especially the indirect effect of aerosols and the possible interaction with the monsoon dynamics remains unknown. Therefore, it is important to obtain observational data of cloud particle properties such as an effective radius over South Asia toward the deeper understanding of interaction between aerosol and Asian monsoon circulation. In this study, the cloud effective particle radius is estimated using geostationary satellite Fengyun-2E data in order to evaluate aerosol indirect effects over South Asia and its impact on Asian monsoon. Observations of the cloud effective particle radius have conducted over South Asia in 2012.

	Data anu Iv
Geostationary satellite / Fengyun-2E (FY-2E)	Geostation
Channel and wavelength :	➤ Channel and wavel
IR1 (10.3-11.3 μm), IR2 (11.5-12.5 μm),	IR1 (10.3-11.3 µ
IR3 (6.3-7.6 μm), IR4 (3.5-4.0 μm), VIS (0.50-0.75 μm)	IR3 (6.5-7.0 μm)
Position: 35,800km above the equator at <u>105°E</u>	Position: 35,800km
Resolution: 1.25 km (VIS) and 5 km (IR) at SSP	► Resolution: 1 km (V
Observation schedule: 1 time/hour (Full-disk scan) +	Observation sched
0~1time/hour (Hemisphere scan)	
➢ Area: <u>60°S~60°N, 45°E~165°E</u>	➢ Area: <u>60°S~60°N, 8</u>
➢ IR channel calibration: Done according to GSICS method	➢ IR channel calibration
VIS channel calibration: Undone	VIS channel calibra
Geometric correction: Done	Geometric correctio

Retrieval of the cloud effective particle radius from FY-2E data

For optically thick water cloud, the cloud effective particle radius can be determined solely from reflection function measurements at 3.7 µm (Nakajima and King, 1990; Kaufman and Nakajima, 1993).

Step1: Choosing cloud pixels appropriate for analysis

• Choosing optically thick clouds (Choi et al., 2009)

- T_{IR1}: Observed IR1 Brightness Temperatur
- $\int T_{IR1}^{clear} T_{IR1} > 12[K] \quad \cdot \quad T_{IR1}^{clear}: Clear sky IR1 Brightness Temperatu$
 - L_{VIS}: Observed VIS albedo [%]
 - L_{VIS}^{clear} : Clear sky VIS albedo [%]

Step2: Calculating the cloud reflectance at 3.7 µm band

These equations are solved for the cloud reflectance at 3.7 μ m band

 $B_{\lambda}(T)$: Sensor planck function

 $L_{VIS} - L_{VIS}^{clear} > 6[\%]$

These parameters are calculated for FY-2E using Rstar6b mod

Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Data and Model

ary satellite / MTSAT-2

length : um), IR2 (11.5-12.5 μm), h), IR4 (3.5-4.0 μm), VIS (0.55-0.90 μm) above the equator at <u>145°E</u> VIS) and 4 km (IR) at SSP lule: 1 time/hour (Full-disk scan) + 1~2time(s)/hour (Hemisphere scan) 85°E~155°W (205°E)

tion: Done according to GSICS method ration: **Done** according to JMA method on: No need (Good condition)

Terra / MODIS

➢ MOD06 cloud products (the cloud effective particle radius retreived from 3.7µm channnel)

Rstar6b

➢ Radiative transfer code (Nakajima and Tanaka, 1986;1988)

Analysis period: February. 2012 ~ October. 2012

e [K] ire [K]	• Choosing water clouds (Choi et al., 2009) <u>Ice cloud:</u> $T_{IR1} < 238[K] \text{ or } T_{IR1} - T_{IR2} \ge 4.5[K] \text{ or } T_{IR3} < 228[K]$ <u>Mixed cloud:</u> For no ice, $238[K] \le T_{IR1} < 268[K] \text{ and } 228[K] \le T_{IR3} < 239[K]$ <u>Water cloud:</u> For no ice/mixed, $T_{IR1} \ge 268[K] \text{ or } T_{IR3} \ge 239[K]$	Cloud effective particle radius (um)
	Stop2. Converting to the offective redive	(un) 16 snipp
L	Steps: Converting to the effective radius	원 12
d, ρ _{3.7} .	The reflectance at 3.7 µm is converted to the effective radius according to conversion tables estimated from Rstar6b.	0 I O I O I O I O I O I O I O I O I O I
ance	Conversion tables are developed by considering	
L ₁₁	angles between the sun and the satellite.	
	Reflectance	
	$\int_{0.4}^{0.5} (-1) = 0$	
t_{11}^{2}	• Solar zenith angle: 20° • Satellite zenith angle: 20°	•
	10020406000	
B ₁₁ (T)	$\begin{array}{c} -4 & 68 & 10 & 12 & 14 & 16 & 8 \\ \hline \text{the cloud} & 10 & 12 & 14 & 16 & 18 & 200 \\ \text{effective particle radius} & 16 & 18 & 200 \\ \hline \text{the sun and the satellite} \\ \hline 0.5 \\ \hline 0.5$	•
ouds	Table example 2 $\rightarrow $ $\begin{array}{c} 0.4\\0.3\\0.2\\0.1\end{array}$	•
	• Solar zenith angle: 50°	
<u>el.</u>	• Satellite zenith angle: 50° the cloud of the structure particle radius the sun and the satellite	

Inter-comparison of satellite-derived cloud effective radius

To validate the accuracy of the analysis of FY-2E data, we conduct inter-comparison of satellite-derived cloud effective radius. **Comparison between FY-2E and MODIS Comparison between FY-2E and MTSAT-2** 03Z June, 2012 06Z June 06, 2012 03Z June 11, 2012 Monthly composite (South Asia) (East Asia) y=A+Bx A= 3.5677901 B= 0.716419944 R r= 0.645995249 r^2= 0.417309862 RMSE RMSE= 1.60613477 y=A+Bx A= 6.93820512 B= 0.285055514 R r= 0.604348458 r^2= 0.365237059 RMSE RMSE= 7.20127153 y=A+Bx A= 6.86461018 B= 0.377058835 R r= 0.643279269 r^2= 0.413808218 RMSE RMSE= 3.99721122 ÍÓOE 110E 120E 130E 140E 15 20 MTSAT 15 [µm]

Adequate correlations have been confirmed between the result from FY-2E and those from MTSAT-2 or MODIS cloud products.

Summary

We develop the new method to estimate the cloud effective particle radius from a geostationary satellite, Fengyun-2E.

The validity of cloud effective particle radius obtained by this procedure has been confirmed by comparing the results from multi-satellites.

General characteristics, the cloud effective particle radius is smaller in continental clouds than in maritime clouds, are confirmed from FY-2E observations.

It is suggested that the cloud effective particle radius over the Indian subcontinent becomes larger during monsoon season. Its diurnal variation also observed, but the reason is not explored yet. The investigation on aerosol-induced impacts on South Asian monsoon will be continued by these data.

