Linking Satellite based Lightning Initiation Nowcasts with WRF Lightning Threat **Forecasts to produce a combined Nowcast of Lightning Onset and Extent**

Objective

Create an algorithm that blends convective and lightning initiation forecasts from the SATellite Convection AnalySis and Tracking system (SATCAST) with forecasts of lightning density from the Weather Research and Forecasting (WRF) model Lightning Forecast Algorithm (LFA).

Figure 1: An illustration of the objective of this research. This is a plot of Time vs. Flash Density. The timeline starts with SATCAST detection of cumuli capable of producing convection/lightning. Following the detection is a plot of actual lightning density on top of the forecasted lightning density from the WRF.

<u>Methodology</u>

- Compile a list of possible case days across LMA domains
- Acquire WRF model output data for each day
- Identify individual convective cells and attain lightning flash data from the LMA for each individual storm
- Calculate "true" lightning origin density for each convective cell
- Plot observed lightning flash data relative to forecasted WRF LFA to find spatial and temporal accuracy of WRF
- Create a range and time weighted approach to link observed flash density to forecasted flash density
- Collect/compute the satellite interest fields from SATCAST to find possible relationships between those fields and lightning density
- Produce an operational algorithm to connect the WRF and SATCAST to nowcast lightning onset and extent

<u>References</u>

Harris, Ryan J., John R. Mecikalski, Wayne M. MacKenzie, Philip A. Durkee, Kurt E. Nielsen, 2010: The Definition of GOES Infrared Lightning Initiation Interest Fields. J. Appl. Meteor. Climatol., 49, 2527–2543.

McCaul, Eugene W., Steven J. Goodman, Katherine M. LaCasse, Daniel J. Cecil, 2009: Forecasting Lightning Threat Using Cloud-Resolving Model Simulations. Wea. Forecasting, 24, 709–729.

This research is funded by the 2009 NASA ROSES Gulf of Mexico Initiative Project.

Matthew D. W. Saari¹, J. R. Mecikalski¹, and E. W. McCaul Jr.²

¹ University of Alabama in Huntsville, Dept. of Atmospheric Sciences, Huntsville, AL ²Universities Space Research Association, Science and Technology Institute (USRA/STI)

• Perfect distance/time-weighted approach to WRF output -Look to include other parameters from WRF to aid in this (CAPE, updraft speed, ect.)

Data

True Lightning Flash Data from NALMA

- Used as Ground Truth
- Can calculate actual lightning orig density from individual storms
- Focus more on storms within 150-km of centroid

Preliminary Results/Progress

Currently building a data base with LMA Flash Origin Density, WRF output flash origin density (from all three threats), and SATCAST convection/lightning initiation fields.

ple Equation for Distance/Time Weighted Average				
	n=forecasted cell #			
	D _n =maximum forecast density for that cell			
Μισια	d=distance from LMA flash sources to forecast cell			
	M=maximum flash density across domain			
	τ=time weight			
	c=scalar			

9	Lon degrees to	Lon Distance	Actual Dist to		
	km conversion	(km)	Storm	Flash Weight	Dist Weight
	0.007365272	200.892638	200.9112219	0.029863937	0.004977323
	0.00737493	209.1669965	210.2162828	0.010703262	0.004757005
	0.007439536	31.31418413	183.9245367	0.006796266	0.005437012
	0.007353757	178.0899195	180.7543562	0.012447833	0.00553237
	0.007376787	180.0945209	181.8970667	0.038483303	0.005497615
	0.007406499	210.8259261	232.880447	0.027911317	0.004294049
	0.007378273	234.6730656	236.4826594	0.038057759	0.00422864
	0.007370473	252.0066288	252.2060155	0.002775509	0.003965012
	0.007369358	265.7149894	265.815001	0.005643022	0.003762015
	0.007350414	266.3998292	269.2522495	0.006313782	0.003713989
				Total Dist Wgt	0.046165031
				Total Flash Wgt	0.17899599
				Weighted Flash	3.877306818

Once a lot of cases are documented,

these scalars can be better "trained"

and applied in the above equation*

to determine the max flash density

based on its location relative to the

 * This equation will most likely be edited based

upon what works/what doesn't. Also, other

methods of weighting are being explored.

possible for a convective storm

WRF forecasted flash density.

	Ave Scalar	LMA Density		
	3.5138516	13.39586		
	2.75176399	12.257614		
	2.30965089	11.001283		
	1.41161493	6.1322264		
	1.40317592	6.0593811		
	1.04304811	4.8932481		
	0.55017403	2.4287304		
	0.2862025	1.2283683		
1	Table 1: This shows the average scalar (in red)			

Table 4: This shows the average scalar (in red) alongside each respective case's flash density.

Future/Ongoing Work

• Repeat methodology on each case to get better results

- Include/compute 3.9-µm interest fields
- Expand to include other LMA site regions
- -Kennedy Space Center (KSC LDAR), Washington D.C. (DCLMA)
- Look into correlations between flash density and satellite fields

gi	n

Date

6/5/2011

Time

(UTC)

1715

1732

1745

1815

Interest Field	Threshold		
10.7-μm T _b	<0°C		
10.7-μm T _b	<-6°C (15 min) ⁻¹		
time trend			
6.5-10.7-μm T _b	>-30°C		
difference			
13.3-10.7-µm T _b	>-13°C		
difference			
6.5-10.7-μm T _b	>5°C (15 min)⁻¹		
time trend			
13.3-10.7-µm T _b	>4°C (15 min) ⁻¹		
time trend			
Table 1: Satellite interest fields and			
thresholds for lightning initiation from			
Harris et al. (2010)			

Satellite Interest Fields used by **SATCAST**

- Satellite thresholds that indicate potential for lightning initiation (LI)
- Can provide an average lead time of ~35 minutes prior to Ll
- Look for possible correlation between these fields and lightning density

(Harris et al. 2010)

SATCAST Interest Fields Approach

	-							
Case #	Lightning Start Time (UTC)	Lightning End Time (UTC)			Cell Latitude	Cell Longitude		
5	1826	1959			35.30368	-86.60336		
Cloud	Cloud Top Cooling							
Top Temp	(10.7 temporal	6.5-10.7	6.5-10.7 temporal	13.3- 10.7	13.3-10.7		LI Time	LMA
LO.7 Tb)	diff)	spec diff	diff	spec diff	temporal diff		(UTC)	Density
81.176	-0.026	-40.588	0.026	-20	0.032			12.25761
270	-9.862	-29.412	9.862	-10	8.824			
82.353	14.253	-42.353	-14.932	-21.176	-12.896			
64.118	-5	-28.824	2.647	-15.882	-1.471		1826	
_								

Table 5: This shows the documentation of 6 observed satellite interest field values (in green) leading up to lightni initiation for a case from 5 June 2011.

6-10 January 2013, Austin, TX

Poster #723