
• Balancing authorities, which include independent system operators and 
electric utilities, use day-ahead (48-hour) variable generation (e.g. wind and 
solar) forecasts to plan for and allocate the day-ahead generation resources.  

• Currently, wind provides the majority of variable power production.  

• The day-ahead wind forecast is an essential tool to estimate wind-generated 
power that will be available on the grid during the next operating day.  

• New techniques that can reduce day-ahead wind power forecast error will 
provide additional value to balancing authorities and ultimately reduce the 
cost of integrating wind into electric systems. 

• Day-ahead wind power forecasts are primarily produced from an ensemble of 
numerical weather prediction(NWP) forecasts which exhibit systematic non-
linear error patterns. 

• Systematic NWP forecast error can vary by: 

 

 

• Various forms of statistical models, known as model output statistics (MOS), 
are commonly used to minimize the impact of systematic model error on 
forecasts. 

• Traditional MOS techniques have several limitations: 

o Artificial neural networks require long training periods and tend to overfit 

o Support vector machines are slow to train over large datasets and depend on the 
choice of kernel parameters 

o Linear regression assumes normal distribution and is overly sensitive to outliers 

• These limitations make the ensemble decision tree technique known as 
“random forest” a promising and interesting method that may be applied to 
NWP forecasts in order to more effectively reduce model forecast error. 
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 Motivation 

• Associated with the slow movement to the E of a weak  frontal  boundary 
between high speed SE flow to the E  and weaker WSW flow to the W 
• Models had much difficulty forecasting this event even 2-3 hours ahead 

Method 

• Random forest (RF)1  is a non-parametric machine learning method that 
improves on the decision tree approach2  in several ways: 

o Random forest trains from an ensemble of trees on resampled versions of the 
original training set using a bootstrap technique to explore the range of dataset 
variability. 

o  At each node of the tree, only a random subset of the data attributes are 
evaluated.  

• Unlike other techniques random forest trains quickly, is less prone to 
overfitting and can account for non-linear relationships. 

Sensitivity to Input Model 

Ensemble Results 

• To determine the impact of using predictors from more than one model, 
several ensemble aggregate forecasts were generated for a six month 
period from April – September 2012: 

o Raw: unweighted average of both the GFS and NAM wind speed forecast 
after a power curve is applied. 

o LR_ENS_240: unweighted average of 4 methods; LR_Wind and LR_Power for 
GFS and NAM data using 240 training days. 

o LR_ENS_30: unweighted average of 4 methods; LR_Wind and LR_Power for 
GFS and NAM data using 30 training days. 

o RF_ENS_240: unweighted average of RF_Power for GFS and NAM data using 
240 training days. 

o RF_WEIGHTED_240: RF weighting predictors from both GFS and NAM data 
using 240 training days. 

• Uneven weighting of model state variables in RF reduces the power 
production forecast error by 3.96% for MAE and 1.89%  for RMSE over 
an average of RF-adjusted NAM and GFS for a 6 month period. 

 

 

 

 

Conclusions and Future Work 

• RF is an efficient machine learning technique that can reduce the error 
of NWP-based day-ahead wind power generation forecasts.    

o RF trains quickly, is less prone to overfitting than other methods, and can 
account for non-linear interactions among predictors. 

• RF took advantage of  larger training samples more effectively  than  a 
screening linear regression technique for a 5-month evaluation period. 

• RF-based forecasts using predictors from 2 NWP models improved upon 
a simple average of RF-adjusted forecasts from each model suggesting 
that RF has skill in unevenly weighting the individual forecasts. 

• Area for further development: 

o Screening of candidate predictors to identify which are most useful in order 
to limit predictor to a smaller set of the most effective predictors without 
overfitting. 

o Regime-based training (pre-partitioning of sample into subsamples or 
addition of regime based predictors) 

Single Site Sensitivity to Training Sample Size by Method Type 

• 48-hour forecasts of hourly power production were produced daily for one site over a 5 month period 

• Each method was retrained monthly using 30 -240 training days 

• 3 Methods were trained using  the GFS model variables (predictors): 

o LR_Wind: Linear regression trained to wind speed then converted to power 

o LR_Power: Linear regression trained directly to power 

o RF_Power: Random forest trained directly to power 

• Methods are compared to the raw GFS wind speed forecast put through a power curve 

• RF_Power performed the best, with increased improvement for larger training sample sizes 

• LR_Power performed the worst most likely due to non-linear correlation from model state to power 
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• Trained for both 30 and 240 days 
once per month 

• Aggregate of 50 wind sites 

• RF 6 month average RMSE 
improvement was 19.64% over the 
raw GFS method as compared to 
11.39% and 4.40% for wind and 
power LR methods (240 training 
days). 

• 30-day training linear regression 
methods did best in August during 
a very persistent weather regime. 
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• Compared linear regression to random forest for both GFS 
and NAM models with 30 and 240 training days. 

• Results show % decrease in MAE and RMSE over either NAM 
or GFS (raw) model wind forecast put through a power curve. 

• Darker colors denote NAM methods compared to raw NAM 
and lighter colors denote GFS methods compared to raw GFS. 

• RF decreases RMSE more than MAE and improves the NAM 
forecast more than GFS. 

• LR with 240 training days is slightly better than RF for MAE 
using NAM input, mostly due to the improved performance in 
July-August months (shown above). 
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MW Generation 
(uncurtailed) 

AGG Power Production vs. 
Ensemble Forecast Methods 

April 11-15 2012 
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Experimental Design 

• A RF approach was used to directly predict wind power production (% of 
plant capacity)  and compared to a screening multiple linear regression 
(LR) technique and model forecasts without bias correction (raw). 

• Forecasts  were produced for a number of wind farms in Texas and 
aggregated to generate a system wide forecast (AGG) using two years of 
observations and model data.  

• Predictor variables (input) from the North American Mesoscale Model 
(NAM) and Global Forecast System (GFS) NWP models at selected heights 
for each forecast location included: 

o Wind Speed and Direction 

o Temperature 

o Geopotential height 

• The RF model was retrained monthly using various training periods sizes 

• Each method can be trained to predict either wind or power 

Training 

Forecasting 

o Location 

o Time of Day 

 

 

o Season 

o Weather Regime 

 

1. Breiman, L., 2001 Random Forests. Machine Learning,45, 5-32. 
2. Breiman, L.,1984: Classification and Regression Trees, Chapman & Hall, 358 pp. 
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