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ABSTRACT 

Santa Ana winds, common to southern California during the fall through early spring, are a type of katabatic wind that originates 
from a direction generally ranging from 360°/0° to 100° and is usually accompanied by very low humidity. Since fuel conditions 
tend to be driest from late September through the middle of November, Santa Ana winds occurring during this time have the 
greatest potential to produce large, devastating fires when an ignition occurs. Such catastrophic fires occurred in 1993, 2003, 
2007, and 2008. Because of the destructive nature of such fires, there has been a growing desire to categorize Santa Ana wind 
events in much the same way that tropical cyclones and tornadoes have been categorized. The Offshore Flow Severity Index 
(OFSI), previously developed by Predictive Services, is an attempt to categorize such events with respect to large fire potential, 
specifically the potential for new ignitions to reach or exceed 100 ha based on breakpoints of surface wind speed and humidity. 
More recently, Predictive Services has collaborated with meteorologists from the San Diego Gas and Electric utility to develop a 
new methodology that addresses flaws inherent in the initial index. Specific methods for improving spatial coverage and the 
effects of fuel moisture have been employed. High resolution reanalysis data from the Weather Research and Forecasting (WRF) 
model generated by the Department of Atmospheric and Oceanic Sciences at UCLA is being used to redefine the OFSI. In 
addition to the new methodology, social scientists from the Desert Research Institute have been contracted to evaluate how this 
index might best be conveyed to the user so as to maximize its effectiveness. This paper will outline the methodology for 
developing the improved index as well as discuss how it might benefit fire agencies, private industry, broadcast media groups and 
the general public. 
 
 

1. Introduction 

From the fall through early spring, offshore winds, or 
what are commonly referred to as “Santa Ana” 
winds, occur over southern California from the 
coastal mountains westward, from Ventura County 
southward to the Mexican border. These synoptically 
driven wind events vary in frequency, intensity, and 
spatial coverage from month to month and from year 
to year, thus making them difficult to categorize. 
Most of these wind events are associated with mild to 
warm ambient surface temperatures >= 18° C and 
low surface relative humidity <= 20%. However, 
during the late fall and winter months, these events 
tend to be associated with lower surface temperatures 
due to the air mass over the Great Basin originating 
from higher latitudes.  There are a variety of ways to 
define a Santa Ana event through the analysis of local 
and synoptic scale surface pressure and thermal 
distributions across southern California (Raphael 
2003).  For our purposes, Mean Sea Level Pressure 
(MSLP) map types and surface wind speed 
observations will be the determining factors whether 

or not a Santa Ana wind event occurred.  This is a 
necessary process as it helps distinguish a true Santa 
Ana from the normal nocturnal offshore winds that 
occur throughout the coastal and valley areas.  
 
During 21 through 23 October 2007, Santa Ana 
winds generated multiple large catastrophic fires 
across southern California (Moritz et al.2010). Most 
notable was the Witch Creek fire in San Diego 
County, where wind gusts of 26 m/s were observed at 
the Julian weather station along with relative 
humidity values of ≈ 5%. However, high resolution 
model simulations at 667 meters showed that wind 
velocities were much higher in unsampled areas 
(Fovell 2012). This event generated an interest in 
categorizing Santa Ana winds so that, with such an 
index available, fire agencies and first responders, 
private industry, and the general public could be 
more informed about the degree of severity an event 
would have on the fire environment. This index could 
also help augment Fire Weather Watches and Red 
Flag Warnings from the National Weather Service by 
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providing value added information about an 
impending event. 
 
The Predictive Services Unit, functioning out of the 
Geographic Area Coordination Center in Riverside, 
California, is comprised of several meteorologists 
employed by the USDA Forest Service. In 2009, 
Predictive Services developed the Offshore Flow 
Severity Index (OFSI), which categorizes Santa Ana 
wind events according to the potential for a large fire 
to occur (Rolinski et al. 2011). This unique approach 
addresses the main impact Santa Ana winds could 
have on the population of southern California beyond 
experiencing the casual effects of windy, dry 
weather.  
 
San Diego Gas and Electric (SDG&E) is a regulated 
utility provider across the southern portions of 
Orange County and all of San Diego County.  During 
the October 2007 event, it was determined that power 
lines were the cause of several large fires, including 
the Witch Creek fire in San Diego County. The cost 
of these fires to date currently exceeds 2 billion 
dollars. As a result, SDG&E is investing in fire 
weather related research and technology to develop 
an enhanced warning system for dangerous wildfire 
conditions.  Having advance notice of the severity 
and timing of a Santa Ana wind event would permit 
SDG&E to prepare, monitor, and deploy its resources 
for maximum effectiveness. In order to accomplish 
this, SDG&E is partnering with the local 
meteorological and fire community on this project. 

The OFSI has been proven to be successful in terms 
of capturing the overall nature of a Santa Ana wind 
event.  However its basic method in addressing 
complex issues such as time, topography, and fuel 
conditions was perceived to be overly simplistic by 
the scientific community and also by other users of 
the index. These issues have since been addressed 
and will be discussed in detail in the following 
section.  
 

2. Background 

A seven day forecast of the OFSI is currently being 
produced by Predictive Services on a daily basis for 
the southern California coastal, valley, and mountain 

areas which have been divided into three zones (Fig. 
1).  Zone 1 covers the southern portion of Ventura 
and Los Angeles Counties. Zone 2 consists of Orange 
County, as well as western Riverside and western San 
Bernardino Counties. Zone 3 represents most of San 
Diego County (Fig. 2).  These zones were chosen in 
part based on the different offshore flow 
characteristics that occur across the region. For 
instance, Santa Ana winds across Zone 1 and Zone 2 
are primarily a result of offshore surface pressure 
gradients (locally and/or synoptically) interacting 
with the local terrain to produce gap winds through 
Soledad Canyon, the Cajon Pass, and the Banning 
Pass (Hughes and Hall 2010; Fovell 2012). These 
winds also tend to precede the Santa Ana winds that 
occur across San Diego County by 12 to 24 hours. 
Across Zone 3, offshore winds take on a more 
“downslope windstorm” characteristic driven largely 
by the tropospheric stability (Fovell 2012). In 
addition, these zone boundaries were developed 
partially around political boundaries, as well as 
around the news media broadcast markets that cover 
the area.  

Figure 1 ‐ A 7‐day forecast of the Offshore Flow Severity 
Index (OFSI) displaying categories of Santa Ana winds. 

Figure 2 ‐ Map depicting OFSI Zones over southern 
California. Favored wind corridors are indicated by 
yellow arrows. 
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A large fire is defined as the 95th percentile of daily 
largest fires occurring over the past 20 years across 
the region depicted in figure 2. Thus a large fire for 
Zones 1, 2, and 3 is 100 ha, which is typically when 
additional resources will be required from outside the 
point of origin to suppress the fire. This large fire 
definition was used to develop the OFSI, which 
correlates historical fire information with surface 
wind speed and humidity from Remote Automated 
Weather Stations (RAWS), to initially form a four 
tier categorical index (Rolinski et al. 2011). Scatter 
plots of wind velocity vs. relative humidity show the 
frequency distribution of ignitions and 100 ha fires 
respectively over the dataset period during Santa Ana 
wind events (Figures 3 and 4). Comparing these plots 
with each other revealed natural breakpoints in the 
data that were used to define the OFSI categories. 
This process was repeated for multiple RAWS to 
determine a site that would be most effective in 
representing each zone. Stations near the coast 
sometimes indicated offshore events as being weaker 
and of shorter duration than the mountains. We found 
inland valley stations usually worked best in 
capturing the overall nature of the event. In the final 
analysis, the Saugus, Corona, and Julian RAWS were 
used to represent Zones 1, 2, and 3 respectively (Fig. 
2). However, due to the necessarily simplistic nature 
of this approach, the spatial complexities inherent to 
offshore flow were not captured. In addition, the 
OFSI employed a rudimentary scheme to address fuel 
dryness which did not take into account other critical 
components of fuel moisture. Both of these aspects 
revealed a weakness in the initial conceptual model, 
but significant improvements have been made since 
then which will be discussed in the next section.      
  

3. A New Methodology 
 
a) Large Fire Potential – Meteorological 

Conditions 
The potential for an ignition to reach or exceed 100 
ha depends on a number of components: e.g. various 
meteorological and fuel conditions, suppression 
strategy, topography, accessibility, and resource 
availability. Current methods to evaluate fire 
potential include various indices from the National 
Fire Danger Rating System (NFDRS) and from the 
Canadian Forest Fire Danger Rating System 
(CFFDRS) (Preisler et al. 2008). The Fosberg Fire 
Weather Index (FFWI) is one such index which is a 
function of wind speed, humidity, and temperature 
with output values ranging from 0 to 100 (Fosberg 
1978). While the FFWI may show elevated output 
values for a Santa Ana wind event, it can also show 
elevated values for any day therefore making it too 
generic for our purposes. The initial concept of OFSI 
was a first attempt to create an index more specific to 
Santa Ana wind events, but further studies resulted in 
a new approach, which we term Large Fire Potential 
(LFP). Assuming an aggressive suppression strategy 
is employed with adequate resource availability in an 
easily accessible area where topography is uniform, 
LFP becomes a function of the fuel and weather 
conditions preceding, during, and following the time 
of ignition. Supposing for the moment that fuels are 
fully receptive to ignitions and will support large fire 
growth, the weather component of LFP (e.g., LFP୵) 
during a Santa Ana wind event can be expressed by 
the following equation: 
 
[1] 

ܨܮ ௪ܲ ൌ 	 ௦ܹ
ଶܦௗ 
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Figure 4 ‐ Scatter plot displaying days in which a fire 
(any size) occurred. 

Figure 3 ‐ Scatter plot displaying days in which a large 
fire (100 ha) occurred. 
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where Wୱ is the 6 m wind velocity (mph) based on 
the anemometer height used by RAWS and other 
stations, and Dୢ is the surface dew point depression 
(°F). It has been suggested that wind velocity has an 
exponential effect on the spread of fire among finer 
fuels such as grass and chaparral, and that wind can 
also have the same effect on fire spread as a fire 
burning upslope with little or no wind (Rothermel 
1972). Dew point depression (T-Td) depicts the 
dryness at the surface well, and has a profound 
impact upon fuel conditions. Also, dew point 
depression can sometimes differentiate better 
between warm and cold offshore events than relative 
humidity can. In our dataset, it has been noted that 
larger dew point depression values (Dୢ  >= 24°C) 
have mainly been associated with warm events. 
While this may seem trivial, cold Santa Ana wind 
events (surface ambient temperatures < 16°C) are 
usually not associated with large fires. This may be 
due in part to lower fuel temperatures because in 
those cases more time would be needed to reach the 
ignition temperature. Another reason is that colder 
events are sometimes preceded by precipitation either 
by a few days or by a few weeks which would cause 
fuels to be less receptive to new ignitions. These are 
the primary reasons why temperature was excluded 
from equation [1] although it has been incorporated 
indirectly through the use of Dୢ	and in the fuels 
component that will be discussed in the following 
section. Finally we note that while equation [1] bears 
some resemblance to the FFWI, a comparison of 
daily outputs of FFWI and	LFP୵, revealed that LFP୵ 
provides significantly greater contrast between Santa 
Ana days and non-Santa Ana days. Therefore, these 
results favored LFP୵ as being the more appropriate 
equation for our purpose. 
 

b) Large Fire Potential – Fuel Conditions 
In addition to the meteorological conditions, large 
fire potential is also highly dependent on the state of 
the fuels. Given the complexity of the fuel 
environment (i.e. fuel type, continuity, loading, etc.), 
we decided to focus more specifically on the 
moisture content of fuel conditions since that 
component plays a critical role in the spread of 
wildfires (Chuvieco et al.  2004). For our purpose, 
we have condensed fuel moisture into three 

components: 1) dead fuel moisture, 2) live fuel 
moisture, and 3) the state of green-up of the annual 
grasses. Each of these components is complex and 
will be defined more specifically later. While these 
elements of the Fuel Moisture Component (FMC) 
often act in cooperation, there are times when they 
are out of sync with one another due to the variability 
in precipitation (frequency and amount) across 
southern California in the winter. The relationship 
between these three components is expressed in the 
following equation: 
 
[2] 

ܥܯܨ ൌ ൬
ܮܦ
ܯܨܮ

െ 1൰   ܩ

 
where DL is a Dryness Level index consisting of the 
Energy Release Component (ERC) and the ten hour 
dead fuel moisture timelag (10-h). Live Fuel 
Moisture (LFM) is a sampling of the moisture 
content of the live fuels indigenous to the local 
region, and G is the greenness of the annual grasses. 
Currently we are making the assumption that all the 
terms in equation [2] have equal weight, but further 
study may lead to future modification. ERC is a 
relative index of the amount of heat released per unit 
area in the flaming zone of an initiating fire and is 
comprised of live and dead fuel moisture as well as 
temperature, humidity, and precipitation. While ERC 
is a measure of potential energy, it also serves to 
capture the intermediate to long term dryness of the 
fuels with unitless values generally ranging from 0-
100. The 10-hr dead fuel moisture timelag represents 
fuels in which the moisture content is exclusively 
controlled by environmental conditions (Bradshaw et. 
al., 1983). Output values of 10-h are in g/g expressed 
as a percentage ranging from 0-35. In the case of the 
10-h, this is the time required for the fuels (1/4” – 1” 
in diameter) to lose approximately two-thirds of their 
initial moisture content (Bradshaw et al. 1983). Thus 
the DL index mainly serves to capture the dead fuel 
moisture and has three unitless categories: 1 indicates 
fuels are moist, 2 represents average fuel dryness, 
and a 3 indicates that fuels are drier than normal.   
 
The observed LFM is the moisture content of live 
fuels, e.g. grasses, shrubs, and trees, expressed as a 
ratio of the weight of water in the fuel sample to the 
oven dry weight of the fuel sample (Pollet and Brown 
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2007). Soil moisture as well as soil and air 
temperature govern the physiological activity which 
results in changes in fuel moisture (Pollet and Brown 
2007). LFM is a difficult parameter to evaluate 
because of the irregularities associated with observed 
values. For instance, samples of different species of 
native shrubs are normally taken twice a month by 
various fire agencies across southern California. 
However, the sample times often differ between 
agencies and the equipment used to dry and weigh 
the samples may vary from place to place. In 
addition, sample site locations are irregular in 
distribution and observations from these sites may be 
taken sporadically. This presents a problem when we 
attempt to assess LFM over the region shown in 
figure 2. Apart from taking fuel samples, there are 
several ways of estimating LFM using 
meteorological variables, soil water reserve, solar 
radiation, etc. (Castro et al.  2003). One method uses 
satellite derived Normalized Difference Vegetation 
Index (NDVI) data and surface temperatures, as well 
as the Julian day, to form a linear regression equation 
which approximates the LFM content of C. 
landanifer, a shrub species common in Spain and 
other parts of the Mediterranean (Chuvieco et al.  
2004). Since the climate and fuel conditions of 
southern California are similar to those of Spain, the 
authors will consider taking this same approach to 
estimate LFM rather than relying on the observed 
LFM values.  
 
Following the onset of significant wetting rains, new 
grasses will begin to emerge in a process called 
green-up. While the timing and duration of this 
process fluctuates from year to year, some degree of 

green-up usually occurs by December across 
southern California. During the green-up phase, 
grasses will begin to act as a heat sink, thereby 
preventing new ignitions and or significantly 
reducing the rate of spread among new fires. By late 
spring these grasses begin to cure with the curing 
phase normally completed by mid-June. In equation 
[2], G is a value that quantifies the said green-up and 
curing cycles of annual grasses. 

G is derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) NDVI data at a 
resolution of 250 meters for select pixels consisting 
solely of grasslands. NDVI is further defined by red 
and near-infrared (NIR) bands in the following 
equation: 

[3] 

ܫܸܦܰ ൌ
ேூோߩ 	െ ௗߩ		
ேூோߩ 	ߩௗ

	

where ρb= reflectance in band b (Clinton et. al., 

2010). It can be shown that NDVI values for 
Southern California grasslands generally range from 
about 0.25 (±0.05) to 0.75 (±0.05) for an average 
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Figure 5 ‐ Time series showing the seasonal variability of the Normalized Difference Vegetation Index (NDVI). 

Table 1 ‐ Greenness (G) values associated with NDVI ranges.
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rainfall year (Fig. 5). There is evidence that NDVI is 
affected by soil color (Elmore et. al., 2000), which 
may explain the NDVI differences (±0.05) seen 
among the selected Southern California grassland 
locations. 

G is given a rating of 0-5 based on NDVI data, where 
0 is green and 5 is fully cured. When applying the 
methodology discussed by White (White et al. 1997) 
to the general range of Southern California 
grasslands, green-up is estimated to have occurred 
when NDVI exceeds 0.50. However, we have found 
that this value can be closer to 0.55 for some sites. 
Therefore, NDVI values greater than or equal to 0.55 
are assigned a value of 0, or green. Furthermore, 
NDVI values less than 0.35 are assigned a value of 5. 
This is because NDVI values are observed to be 
below 0.35 for all grassland sites during the dry 
season when grasses are known to be fully cured. A 
linear relationship exists between NDVI for Southern 
California grasslands and fire occurrence. For this 
reason, the transition between green and fully cured 
(or vice versa) was given a rating of 1 to 4 in NDVI 
increments of 0.05 (Table 1). 

FMC modifies equation [1] in cases where fuels have 
not fully cured and are still inhibiting fire spread. 
Output values of FMC range from 0 to 1, where 0 
represents wet fuels and 1 denotes dry fuels. This 
modifier can become so influential that it will greatly 
reduce or even eliminate the potential for large fire 
occurrence despite favorable meteorological 
conditions for rapid fire growth. So the final equation 
for large fire potential becomes:  
 
[4] 
 

ܲܨܮ ൌ 	 ௦ܹ
ଶܦௗܥܯܨ 

 

4. Redefining the OFSI 

The time and spatial problems with the OFSI that 
were previously mentioned have since been 
addressed through the use of the Weather Research 
and Forecasting (WRF) Advanced Research WRF 
(ARW) model, run by Robert Fovell at the 
Department of Atmospheric and Oceanic Sciences at 
UCLA. Using reanalysis data from the WRF-ARW at 
6 km resolution, we initially calculated a maximum 

LFP୵	value for each grid point in the model domain 
for every October between 1979 and 2010. The result 
was a composite map showing the areas where LFP୵ 
is greatest (Fig. 6). The process was repeated for the 
same time period substituting the month of January 
for October (not shown). The results were similar 
except the areas affected by LFP୵ were larger and the 
values were higher overall. This is because offshore 
wind events across southern California tend to 
become stronger in the winter due to more favorable 
atmospheric dynamics (Raphael 2003). The two 
composite images were used to define what are called 
Santa Ana regions (or sub-regions) within each zone, 
which were further refashioned into rectangular 
numbered boxes (Fig. 7).  
 
Next, daily historical values of LFP୵ were calculated 
for each zone, but rather than calculating LFP୵ for 
every grid point in the entire zone (which would 
include areas not affected by the wind event), LFP୵ 
was calculated for grid points only within the boxed 

Figure 6 ‐ Map showing maximum values of LFP (Eq. 1) 
for every October from 1979‐2010. Solid contours 
indicate terrain height. 

Figure 7 ‐ Map depicting Santa Ana regions (shaded) with 
numbered boxed areas. 
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areas of figure 7. The following equation was used to 
calculate LFP୵ at each grid point:  
 
[5] 
 

ீܲܨܮ ௫ ൌ
ܨܮ ܲ௨	ଵ  ܨܮ ܲ௨	ଶ  ⋯	ܨܮ ܲ௨	଼

8
 

 
where LFPୋ୶ is an average 
LFP୵ value over an eight-hour 
time period at grid point x. An 
eight hour time period was 
chosen because that is ample 
time for the finer fuels (i.e. 10-
hr) to respond to the ambient 
atmospheric conditions. Once 
an average LFP୵ had been 
calculated for each grid point, 
the following equation was 
used to evaluate LFP୵ for each 
zone: 
 
[6] 

 

ܨܮ ܲ ൌ
ீܲܨܮ ଵ  ீܲܨܮ ଶ  ⋯	ீܲܨܮ ௫

ܼ݁݊	ݎ݁	ݏݐ݊݅ܲ	݀݅ݎܩ	݂	ݎܾ݁݉ݑܰ
 

 
where LFP୭୬ୣ is an average of eight-hour averages at 
each grid point in the sub-region boxes. It is 
important to note that equation [6] was calculated for 
five different eight consecutive hour time periods 
(see table left) with the highest value chosen to 
represent each zone for the day. This is to ensure that 
the worst conditions are being captured on a daily 
basis. For instance while most Santa Ana wind events 
peak during the morning hours, some events can peak 
later in the day or at night depending on the arrival 
time of stronger dynamical support. Thus calculating 

LFP୵ for only one consecutive eight-hour time period 
may fail to capture the worst conditions of the day. 
The end result from equation [6] yielded a listing of 
daily LFP୵ values per zone for months October-April 
from 1982-2011.  
 
Equation [2] for this same time period has yet to be 
calculated due to the absence of data. In order to 
complete the evaluation of FMC, ERC and 10-h must 
be calculated at each grid point. At the time of this 
writing it is undetermined whether or not the 
traditional algorithms (Bradshaw et al. 1983) will be 
used or if a regression equation will be employed to 
approximate these values. Also, algorithms for 
calculating LFM and G have yet to be developed. 
Final output from these variables is expected later 
this spring or early summer, at which point an in 
depth analysis will be performed. In this forthcoming 
analysis, daily LFP values for each zone will be used 
to derive conditional probabilities of large fire 
occurrence. Breakpoints within these conditional 
probabilities will ultimately lead to the final 
redefined index, which will likely be called the 
“Santa Ana Wildfire Threat” (SAWT) index. Despite 
the fact that FMC has yet to be calculated for the 
entire dataset, preliminary results from Zone 3 show 
how incorporating FMC into equation [1] modifies 
the LFP୵ values which correlate well with observed 
fire activity. For example, consider the table below: 
 
Note that LFP୵ calculated for Zone 3 on 7 January 
2003 had a value of 70, but when FMC was applied, 
the value decreased to 17. While there were ignitions 
on that particular date, no large fires occurred. The 
case of 31 March 2005 is a more dramatic example of 
a situation in which the fuels were completely 
unsupportive of any fire activity, as the final LFP 
value dropped to 0. Conversely, dates that had final 

Date  EQ1 ‐ LFPzone3 DL G LFM FMC  EQ4 ‐ LFPzone3 Ignitions Large Fires Acres

1/7/2003 70 3 0 0.86 0.249 17 Y N

1/1/2008 56 2 0 0.81 0.147 8 N N

10/22/2007 54 3 5 0.55 0.945 51 Y Y 9472

10/21/2007 51 3 5 0.55 0.945 48 Y Y 197990

11/30/2006 48 3 5 0.58 0.920 44 Y Y 296

3/31/2005 48 1 0 1.19 0.000 0 N N

1/21/2010 46 1 0 0.70 0.043 2 N N

12/17/2004 45 2 0 0.76 0.164 7 Y N

2/2/2005 43 1 0 0.90 0.011 0 N N

2/6/2006 41 2 4 0.68 0.595 24 N N

1/10/2009 41 2 0 0.66 0.203 8 Y N

1/17/2008 40 2 0 0.87 0.130 5 Y N
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LFP values exceeding 40 did result in large fires 
when ignitions occurred.  
 
Currently LFP୵ is being computed operationally by 
UCLA using the 12 UTC WRF – ARW model run at 
3 km to produce maps displaying maximum LFP୵ 
values for the three zones (Fig. 8). Evaluation of this 
output is being performed by UCLA, Predictive 
Services, and SDG&E to compare forecast output 
with observed values. Expanded output is planned 
and proposed for the coming months which will 
include a comparison of forecasted values with 
normalized values and a breakdown of which 
component may be contributing the most toward the 
final output. 
 

5. Social Science Impact 

In order for the SAWT index to be a meaningful tool 
for the public, it is important that the social impact of 
such an index be studied in a detailed 
manner.  Understanding social behavior in this 
context will increase our awareness of the public’s 
ability to prepare for, respond to, and recover from 
wildfires. This understanding is vital to the process of 
meteorological product development, which if done 
correctly, will ensure that sustainable, comprehensive 
communication is achieved. To this end, the Desert 
Research Institute (DRI) has been contracted to study 
the social aspect of this project and to make 
recommendations in helping condense and simplify 
previously discussed output into a product that is 
relatable to the user. 

DRI is taking a multi-phased mixed method design 
with regard to the research methodology (Bergman 
2008; Morese and Neihause 2009). Phase one 
involved data collection in the form of a survey of 
Wildland Urban Interface (WUI) areas in southern 
California (n=400) that assessed how meteorological 
and fire information is sourced, perceived, and 
processed by residents. The survey 
instrument also included a scale to assess residents’ 
perceptions of wildfire risk (adapted from Trumbo et. 
al. 2012). In addition, in-depth interviews 
on meteorological fire information use and needs 
were conducted with fire agencies (county, state, and 
federal) and will continue through the coming 

months.  The data from the survey and interviews 
will contribute to the upcoming second and third 
phases of the project. The survey results include data 
about WUI residents' most commonly used sources 
for meteorological and emergency fire information 
on a daily basis and during a wildfire event. This data 
will drive the second phase of the project, which 
focuses on interviews with media representatives 
from the identified media outlets. These interviews 
will be used to develop a better understanding of how 
meteorological and fire information is communicated 
in the media and how it can be influenced to become 
more consistent and relevant to WUI residents. Phase 
three will utilize data from the risk perception scale 
to help assess the most efficient number of levels in 
the index, their associated definitions, the efficacy 
of different modes and types of information, and 
potential color schemes to use in the final 
presentation of the index. 

Impacts from this research will govern the future of 
the SAWT index. In order to achieve maximum 
success, a detailed communication campaign strategy 
will be deployed to educate stakeholders of the index. 
It is our hope that this index will achieve the same 
level of success that the Saffir-Simpson scale has had 
regarding the classification of hurricanes, in terms of 
the ability to communicate a storm’s severity simply 
and effectively to the public, the media, and to first 
responders. 

 

 

Figure 8 ‐ Map showing forecasted maximum LFP 
(Eq 1) values. 
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6. Conclusion 

As the WUI continues to expand across southern 
California, the source of ignitions will increase 
leading to a greater probability for large and 
destructive fires during Santa Ana wind events. This 
puts the public and firefighter safety at risk, thus the 
increasing need to categorize such events in terms of 
their effect on the fire environment.  

While the initial OFSI proved to be generally 
successful, its ability to capture the complexity of 
Santa Ana wind events was limited. This however led 
to the development of a new methodology for a 
redefined index. Expressing large fire potential as a 
function of wind velocity, dew point depression, and 
fuel moisture has allowed high resolution model and 
satellite derived variables to be incorporated into the 
index. This will specifically address the problems 
involving spatial coverage and fuel conditions innate 
to the OFSI. 

Fuel moisture variables for the data period will be 
obtained this summer, at which point a thorough 
analysis will be conducted to develop the final 
product. A prototype product is scheduled to be 
released to a small test group in September. Full 
product deployment is expected by September 2014.         

The use of social science will help in the 
understanding of how various survey recipients react 
to meteorological and fire information. This 
knowledge will eventually dictate what the final 
product will become in terms of its content and 
aesthetic. This last phase of the project is perhaps the 
most important as the success of the index will be 
determined by what information is conveyed and how 
it is presented. 

The benefits of categorizing Santa Ana wind events 
are multifold. Fire agencies and first responders, 
private industry, the general public, and the media 
will have a clearer understanding of the severity of an 
event based on the potential for large fires to occur. 
Specifically, a more effective media response will 
result in the general population (particularly those 
living within the WUI) being more proactive in its 
response to an impending event. In addition, a 
climatology of Santa Ana wind events can be 
developed based on this index which can be used in 

future research involving seasonal outlook 
predictions. 
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