The Use of Analog Ensembles to Improve Short-Term Wind Forecasting

Steven H. Young and John W. Zack

AWS Truepower, LLC, MESO, Inc.

The Hawaii Wind Forecast Problem

- Isolated Island electric grids with relatively significant wind power tration (wind capacity is close to 100% of night-time load on Maui,
- Wind farms tend to be on the upstream (east to northeast side) of the
- bserved features such as rain showers or the interaction of terrain changing stability and the upstream wind speed/direction.
- High-resolution frequently updated NWP (FUN) models can help, but a paucity of upstream observations can limit the effectiveness of this approach
- targeted placement of sensor systems in
- simulations, an analog ensemble approach is being developed to use these observations to improve the 0-3

Analog Ensemble Method

The analog ensemble method selects a historical sample of similar situations by picking cases that most closely resemble the current situation.

- 1. Choose a set of observed or simulated "case-matching" variables
- 2.Compute case-matching score components. A case-matching score component is the difference between a case-matching variable for the
- combine into a case-matching score that measures the "distance" between the forecast case and the historical case in case-matching variable space
- 4. The historical cases with the smallest case-matching scores are selected as
- only ensemble members that are classified in the same regime as the current forecast case

The analog ensemble can be used to generate:

- · A deterministic wind speed or power forecast from the ensemble mean
- distribution of wind speed among ensemble
- A probabilistic forecast of wind speed or power ensemble members

Morning Ramp up at the Apollo Wind Farm

- · Apollo wind farm extends from 6 to 7.75 km north of the southern tip of the big island of Hawaii at an elevation of 190-260 m.
- Δ SoDAR is located at South Point: ~ 4 km SSF of the wind farm at 60 m.
- Northeasterly low-level jet is Nocturnal drainage flow/
- land breeze from the higher
- Increased blocking of the stable night-time flow by the terrain.
- As daytime heating returns. upslope flow/ sea breeze
- develops and blocking is reduced. This allows the jet to shift inland. Regime identification
- Wind speed at South Point is greater than wind speed at Apollo.
- Wind speed at South Point has recently increased.

- Wind is from the northeasterly quadrant

- · For the first 30 minutes of the forecast, wind speed decreases are less frequent while wind speed increases, especially large ones, are more frequent.
- . This suggests the regime is a useful intra-hour forecast tool.

Experimental Design

- Experimental Sample: 3360 morning ramp up regime cases from 1 November 2010 to 31 August 2012.
- · Data: Apollo 15-minute average 80-m wind speed and South Point 10minute average 80-m wind speed and direction.
- Ensemble Selection Parameters: (1) Apollo wind speed, (2) South Point wind speed, (3) South Point wind direction, (4) difference between South Point and Apollo speeds, (5) recent 20-minute speed change at South Point, (6) correlation with the recent 2.5-hour speed time series at Apollo
- . Case Matching Score: Square root of the sum of the squares of the six
- Ensemble Member Selection: the 25 best matches (i.e. lowest case matching scores) in the historical sample as analog ensemble members.
- - Shift wind speeds of ensemble members upward or downward so that the initial member wind speed matches the initial wind speed for the forecast case.
 - o Weight ensemble members by the inverse of their case matching score.
 - o Create deterministic wind speed forecasts from the weighted ensemble mean.
 - o Create probabilistic wind speed and wind speed ramp rate forecasts from the

Performance: Probabilistic Forecasts

Scoring Method: Ranked Probability Score

- CDF_{fc,k} is the cumulative distribution function for forecast probabilities (i.e. the sun
- CDF_{obs.k} is 0 if the observation falls in bins 1 to k and 1 if the observation falls in
- and a low probability to other bins.
- RPS = 0 is a perfect forecast RPS = 1 is the worst possible forecast
- RPS can be averaged over many forecasts to measure probabilistic forecast skill.

RPS For Probabilistic 30-minute Wind Speed Change Forecasts

- Ramp cases (observed wind speed increase > 1.5 m/s, left plot)
- o the morning ramp up regime as a whole performs nonceably better than climatology for the 0-30 minute speed change and slightly better for the 15-45, 30-60 and 45-75 speed changes. o including only cases with similar initial wind speed gives a small improvement. o The analog ensemble performs slightly better than either regime method at all lead times up

- o The analog ensemble has a very slight performance edge over climatology at very short lead times and a negligible edge over the regime based methods also at very short lead times.

Performance: Deterministic Forecasts

MAE For Deterministic Wind Speed Forecast

- Regime average performs only slightly better than
- initial speed reduces error, especially at longer lead times
- significantly more, especially at longer lead times.

AWS Truepower

Case Studies

Case 1: Large Upward Ramp

- A large upward ramp occurred 20 to 70 minutes after forecast time
- Many members predicted the ramp, but most underestimated the amplitude.
- Ensemble weighted mean showed a small upward ramp about 20 min earlier than observed and then a slow increase after that

Case 2: Slow Downward Ramp

- 30 60 90 120 150 180 210 240 270 Forecast Look Ahead Time (min)
- General observed decrease in wind speed with slight down ramp in first 20 minutes.
- Regime is designed to select upward ramp cases, so downward ramp forecasts are a challenge. However, this case was reasonably well predicted by

Case 3: Small Downward Ramp Then Large Upward Ramp

- Initial moderate downward ramp followed by large upward ramp.
- Some ensemble members show one or both ramps to some degree Weighted mean shows a slow,

Summary, Issues and Future Plans

- An analog ensemble forecast method was tested as a wind speed ramp forecasting tool for the morning ramp up regime at the Apollo Wind farm near
- The analog ensemble was compared to baseline forecasts based on climatology and an ensemble of all cases that fall within the morning ramp up regime.
- · Most of the probabilistic ramp forecasting benefit over climatology was obtained with the regime based method. The analog ensemble provided some additional benefit at lead times of 0-30 minutes.
- Deterministic wind speed forecasts showed significant improvement over the regime and climatology at lead times of 30 minutes and longer.
- For upward ramps of at least 1.5 m/s, the analog ensemble provided some additional benefit at most lead times.
- · Limited data from the wind farm and a few SoDARs near the wind farm were available to generate case matching variables.
- Next: identify additional data sources or innovative ways of using existing data to generate an ensemble with more predictive value. Possibilities include:
- o Radial velocity data from a WSR-88D located ~19 km NE of the wind farm o Data from an NWP model that is well-initialized with all or most available remotely
- For more information, contact Steve Young at steve@meso.com