Persistence and Dissipation of Lake Erie- and Lake Ontario-Crossing Mesoscale Convective Systems

Augusta Williams and Nicholas Metz

Hobart and William Smith Colleges

Methodology:
NOWrad composite radar reflectivity imagery spanning the warm seasons (April–September) of 2002–2007 was analyzed to create a climatology of Lake Erie- and Lake Ontario-crossing MCS events. MCSs in this study were 100 km by 50 km in size for at least three consecutive hours before intersecting the lake and contained a 100 km or longer line of 45 dBZ or greater convection (Metz 2011). To persist, an MCS had to maintain size and reflectivity criteria while crossing the lake, and produce at least one severe wind report downstream or the lake. Different types of convective organization may result from different dynamic conditions. Thus, MCSs were classified as either linear (Fig. 1a), bow-echo (Fig. 1b), or non-linear (Fig. 1c).

Climatological Results:
Fifty-nine lake-crossing MCSs were identified in the six-year climatology. Of these, 33 (55.9%) dissipated and 26 (44.1%) persisted. On average, persisting MCSs lasted 15.9 hours, while dissipating MCSs lasted 11.1 hours. There was a maximum of 17 MCSs in May and a minimum of 2 in September. May featured more persisting cases than dissipating (Fig. 2). Lake temperature for each month did not correlate to whether MCSs persisted or dissipated (Fig. 3). The number of dissipating and persisting cases in each organization type varied, with 20% of non-linear, 41% of linear, and 60% of bow-echo events persisting, respectively (Fig. 4). The mean maximum magnitude of the LLJ for persisting (dissipating) cases was 15.7 m s⁻¹ (12.7 m s⁻¹) (Fig. 5). Thus, persisting MCSs generally featuring a stronger LLJ.

Conclusions:
Lake Erie- and Lake Ontario-crossing MCSs can occur during all months of the warm season. However, these MCSs are most favored to occur and persist during May. The water temperature of the lakes has no significant relationship to whether MCSs will persist or dissipate. Rather, the two representative case studies reveal that the synoptic-scale environment provides the main control on whether these lake-crossing MCSs will persist or dissipate. MCSs often persist in environments with robust CAPE and shear over and downstream of the lakes. In addition, persisting MCSs often are located in the core of an intense 850-hPa low-level jet stream and on the anticyclonic shear side of a strong 200-hPa jet stream. Further, as MCSs become increasingly well organized, the persistence percentage increases. This result is intuitive given the importance of the synoptic-scale environment to MCS organization.

Acknowledgements: This research was completed as part of the 2013 undergraduate summer research program at Hobart and William Smith (HWS) Colleges. Funding was provided by the HWS Provost’s Office.