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1. INTRODUCTION 

Planning the seasonal use of water resources 
in advance is one of the most important missions 
in the semi-arid Eastern Mediterranean (EM). The 
area is characterized by complex topography, 
land-uses and coast-lines that lead to steep spatial 
gradients in the observed seasonal precipitation 
(see e.g. Figs. 1 and 2). 

Global seasonal forecasts, available freely on-
line up to 6 months in advance, issued by 
European and American forecasting centers, e.g. 
NCEP, ECMWF and the UK Met Office provide 
partial and incomplete information about the 
expected precipitation amounts in this area due to 
their coarse spatial resolution of ~200 km grid-size 
(see e.g. Fig. 3). Accurate and useful forecasts 
require finer spatial resolution (on the scale of a 
few kilometers). 

The present paper presents statistical 
downscaling methods to refine the global seasonal 
forecasts over Israel that can be operationally 
implemented in real time on an inexpensive 
computational infrastructure.  
 

2. CHARACTERISTICS OF THE SEASONAL 

PRECIPITATION IN THE AREA 

2.1. Physical factors 

 
Hahmann, et al. (2010) and references therein 

have summarized the prevailing meteorological 
process responsible for the precipitation 
characteristics over Israel. We briefly summarize 
the main facts: Israel is located in the EM,  
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Fig. 1: Mean January precipitation for 2001–2006 over 
the area based data from the merged Tropical Rainfall 
Measurement Mission (TRMM) product (adapted from 
Hahmann et al. 2008) 

 
Fig. 2: 50-y average rainfall for the months November-
March, based on 1954-2004. Black circles denote the 
79 monthly long-record rainfall stations and the black 
circles encircle by white denote the 30 daily long-record 
rainfall stations. Height contours are in resolution of 
200m and rainfall contours (isohyets) are in resolution of 
100mm (adapted from Saaroni et al. 2010). 



a transition area between the subtropical high-
pressure belt and the midlatitude westerlies.  
Superimposed on the large-scale processes are 
mesoscale effects related to the complex 
coastlines and terrain. The precipitation season 
extends from September to May and the most 
significant amounts are observed during the cold-
season, i.e., December-January-February (DJF). 

The precipitation is associated with 
Mediterranean cyclones whose climatology has 
been described in several works cited in 
Hahmann, et al. (2010). There are strong near-
coastal gradients in observed precipitation, the 
positions of which have vast hydrologic 
consequences. These gradients are the result of 
the preferred cyclones tracks, their intensity and 
their interaction with the local topography. The 
spatial distribution of the precipitations varies from 
year to year due to the inter-annual variability of 
the frequency of the various types of cyclones.  

Thus, proper estimation of the seasonal 
precipitation over this region requires correct 
simulation of the synoptic flow dominated by extra-
tropical cyclones (proper seasonal frequency of 
cyclones) as well as the mesoscale flow dictated 
by the complex coast and terrain forcing.  

2.2. Classification of weather regimes. 

Alpert, et al. (2004) classified the daily 
synoptic-scale flow in the EM region into 19 
weather regimes or classes using a semi-objective 
method. The classification of weather regimes is 
based upon the NCEP/NCAR Reanalysis Projerct 
(NNRP) dataset that extends from 1950 to the 
present and uses 25 of its grid points surrounding 
the EM coast at 2.5°×2.5° horizontal resolution as 
shown in Fig. 4. The classification procedure uses 
the geopotential height (Z), the temperature (T) 
and the U and V wind-vector components at the 
1000 hPa pressure level to identify the various 
types of flow. A “reference” NNRP sub-set for the 
years 1985 and 1992 was subjectively classified 
by the authors into 19 weather classes. An 
analogue approach based on standardized 
minimum-Euclidean distances was used to classify 
the rest of the NNRP dataset with respect to the 
reference sub-set.  

Saaroni, et al. (2010) have shown that the 
intensity and spatial distribution of the 
precipitations during the wet season is correlated 
to the different cyclones types in Alpert et al. 
(2004), as classified according to their depth and 
location. Moreover, the variability from season to 
season is a result of the rate of occurrence of the 

various types of cyclones that varies from season 
to season. 
 

 
Fig. 3: A typical CFS1.0-ensemble mean precipitation-
rate forecast map zoomed into the EM (this specific 
forecast was issued on October 2009 and shows a 
forecast for January 2010). 
 
 

Fig. 4: The 25 grid points used in the weather-
regimes classification procedure of Alpert et al., 
2004. 

 

3. STATISTICAL DOWNSCALING 
ALGORITHMS 
 

Statistical downscaling is based upon 

statistical links between large(r)‐scale weather and 

observed local‐scale weather. It is computationally 
inexpensive and suitable for our purposes as we 



are interested in an operational tool that can be 
run on a desktop/laptop computer.  

Our algorithms are based on the relationship 
between the large-scale flow associated with the 
EM cyclones and the spatial distribution of 
precipitation at pre-determined gauge stations. 

 
3.1. Gauge stations 
 

After performing a thorough analysis of a 
gauges precipitation database we selected a sub-
set of 18 reliable stations within the chosen main 
hydrological basins (out of a database of hundreds 
of stations). These selected stations provide a 
continuous long-term archive of daily precipitations 
and have undergone a trustable quality assurance 
procedure. We stress the need for a reliable long-
term precipitation record in order to develop a 
precise statistical downscaling algorithm. Fig. 5 
displays the location of the 18 stations on the 
regional map. 

 
3.2. Weather-Regimes Downscaling (WRD) 

 
Motivated by the works of Alpert, et al. (2004) 

and Saaroni, et al. (2010), we have developed a 
weather-regimes analogue-type statistical-
downscaling algorithm based on the correlation 
between the frequency of the 19 weather classes 
and the local precipitation. We refer to this method 
as WRD.  

First, for the selected stations we calculate the 
monthly multi-year-mean precipitation associated 
with each of the weather regimes using the 
archived observed precipitation and the NNRP 
dataset (that has been classified into weather 
regimes using standardized minimum-Euclidean 
distances with respect to the reference NNRP sub-
set). The synoptic-scale flow of the seasonal-
global forecasts may be classified into the 19 
weather regimes by calculating their standardized 
minimum-Euclidean distances with respect to the 
NNRP classified dataset. The frequencies of each 
weather regime in the seasonal-global forecasts 
are then calculated and used to predict the future 
local precipitation by weight-averaging the multi-
year mean precipitation amounts corresponding to 
the various weather regimes with those 
frequencies. The method may be considered an 
analogues-matching algorithm, in which the 
closest analogue is used to determine the weather 
class.  

Since we can only find similar but not identical 
weather conditions in the past, the use of weather 
categories and mean precipitation amounts per 
category is used to introduce an estimate of the 

uncertainty in our forecast. We also stress the 
importance of using the 25 grid points individually, 
rather than considering spatial-averaged values, a 
strategy that could simplify our algorithm. Similar 
spatial-averaged values may lead to very different 
locations of the lows minima and gradients 
resulting in very different spatial precipitation 
distributions. In other words, spatial averaging 
over the 25 grid points makes the large-scale 
information even coarser. Fig. 6 presents a flow 
chart of the algorithm. 
 
 
 

 
Fig. 5: The location of the 18 selected stations on top of 
the topography. Different symbols and naming are used 
for the different basins: Coastal (+, CO), Carmel (□, CA), 
Western Galilee (●, WG), Sea of Galilee/Kinneret (◊, 
SG), Mountain/Yartan (*, YA). 

 

 



 
Fig. 6: Flowchart of the weather-regimes downscaling (WRD) algorithm using Alpert et al. (2004) 19 weather classes. 

 
 

3.3. Analogues Downscaling (AN) 
 

Our second strategy relies on a simple 
analogues technique using the same large-scale 
variables and grid-points as chosen by Alpert, et 
al. (2004), but without considering the classes 
defined in that work. We find the past analogues 
closest to the future event according to the 
standardized-Euclidean distances and weight the 
daily precipitation in inverse proportion to their 
squared distances. By doing so, we take into 
account small differences in the large-scale 

weather patterns that were neglected in the 
classification into a small number of categories as 
defined by Alpert, et al. (2004). The use of more 
than one analogue (we considered up to 6 closest 
analogues) introduces the uncertainty due to the 
fact that only approximate analogues may be 
found. Monthly precipitation is simply the sum of 
the daily amounts. Fig. 7 presents a flow chart of 
the algorithm. 

 
 



 
Fig. 7: Flowchart of the analogues downscaling (AN) algorithm. 

 
 

4. VALIDATION USING NNRP 
 
4.1. Rationale 
 

Prior to being used to downscale real-
seasonal forecasts, the algorithm was validated 
using the accurate large-scale circulation patterns 
provided by the NNRP dataset. In doing so, we 
assume “perfect large-scale flow” and test the 
accuracy of the other components of the 
algorithm. It should be noted that the large-scale 
flow simulated by the global-seasonal forecasts is 
expected to be less accurate than that reproduced 
by reanalysis as these are run in a hindcast mode 
(for periods of time in the past) including 
assimilation of meteorological observations which 
mitigate model errors, whereas observations are 

obviously not available for forecasts estimating the 
flow at future times.  

Our validation strategy consists of 
downscaling 21-27 wet seasons (between 1981 
and 2008, depending on the availability of rain 
gauge observations) of the NNRP database. 18 
wet seasons are used as a reference set for the 
weather regimes and analogues identification, and 
their corresponding precipitation at each station 
(1991-2008); the downscaled year is excluded 
from the reference set each time. 
 
4.2. Validation results 
 

The validation was designed to provide skill 
information that is useful to water resources 
managers. 
 
 
 



4.2.1. Spatial and inter-annual variability 
 

Figure 8 presents observed and NNRP-
downscaled DJF precipitation, and the observed 
mean (we refer to this quantity as “climatological 
mean”, calculated over the studied period), at 
each station, for two extreme seasons. The 
stations are ordered according to basins following 
the naming in Fig. 5. WRD predictions use up to 
two nearest weather regimes i.e. WRD2, AN 
predictions use up to three nearest analogues i.e. 
AN3. The use of additional past weather 
regimes/analogues within each of the methods 
does not lead to improvement. 

The 1998-1999 season in Fig. 8a, depicts the 
driest season during the studied period and is 
characterized by large observed gradients among 
some stations located at different basins (as large 
as ~350 mm). At all stations, the observed 
precipitation was below its climatological mean. 
This pattern has been accurately reproduced by 
both downscaling methods. Both downscaling 
methods predict particularly well the inter-station 
gradients. The predictions by both methods are 
very similar, but the AN3 shows small advantage 
in 14 stations. The WRD2 method tends to slightly 
overestimate the observed precipitation amounts, 
in particular at the Carmel, Coastal and Yartan 
basins. These are the driest basins. The 
overestimation by the WRD2 method is a result of 
using the weather-regimes mean daily-
precipitation as an estimate of the daily predicted 
precipitation, which may be a poor estimate of the 
lower extremes of the precipitation distributions 
associated with each regime. On the other hand, 
the use of single analogues, as is the AN3 
method, introduces precise precipitation amounts 
of past extreme events.  

The 2002-2003 season, Fig.8b, illustrates one 
of the wettest seasons in the studied period and is 
characterized by relatively large observed 
gradients among stations too (as large as 220 
mm). Both prediction methods reproduce the inter-
station variability to a significant extent. However, 
they both tend to underestimate the observed 
amounts to some level, in particular for stations 
showing extremely high amounts. In those cases, 
the AN3 outperforms the WRD2 predictions. The 
underestimation of extreme amounts results from 
the fact that only 3 wet seasons are observed in 
the historical set (excluding 2002-2003), 
illustrating the need for historical records as long 
as possible in statistical downscaling methods. 
The larger underestimation obtained in the WRD2 
method is a result of using the weather-regimes 
mean daily-precipitation amounts as an estimate 

of the predicted daily precipitation, that poorly 
represent the upper extremes of the daily 
precipitation distributions associated with each 
regime. This is due to the fact that the daily 
precipitation distribution is skewed towards low 
values (not shown here). On the other hand, the 
use of single analogues, as is the AN3 method, 
introduces precise precipitation amounts of past 
extreme events. 
 
4.2.2. Linear relationship between downscaled 
and observed seasonal precipitation 

 
Figures 9a and 9b shows scatter plots of 

observed vs. NNRP-downscaled DJF precipitation 
using the WRD2 and AN3 methods, respectively, 
at the 18 selected stations for each of the seasons 
within the period 1981-2008. The full line 
represents the linear regression relationship 
between the observed and estimated values. The 
dashed line represents the y=x line, i.e., the linear 
regression for a perfect model. Both figures show 
that the observed-precipitation distribution is 
skewed towards lower values with fewer events of 
DJF precipitation above 800 mm. Both methods 
show fair linear agreement between downscaled 
and observed precipitation. However, the WRD2 
tends to underestimate the upper tail of the 
distribution and overestimate the low tail of it, for 
the reasons detailed in Section 4.2.1. Both 
methods explain about 80% of the observed 

variance, with little advantage in the AN3 method. 

5. DOWNSCALING OF CFS1.0 ENSEMBLE OF 
SEASONAL FORECASTS  
 

The CFS1.0-ensemble seasonal forecasts 
(Saha et al. 2006) were used to implement the 
AN3 algorithm in a real-time automatic operational 
mode. We have used all CFS1.0-ensemble 
members issued for a given month with initial 
conditions at the 1

st
 through the 29

th
 of each 

month. For each day four different members are 
issued. This provides a total of 116 members in 
our downscaled forecasts of each month. All of 
them are equally weighted.  

The AN3 algorithm was applied to each of the 
CFS1.0-ensemble members, thus providing an 
ensemble of downscaled precipitation. Figure 10 
compares the CFS1.0-downscaled (using the AN3 
algorithm) DJF forecasts to the observed 
precipitation at each of the stations for the 2009-
2010 and 2010-2011 seasons (CFS1.0 ensemble 
initial conditions issued in October). Downscaled-
ensemble mean values are dressed with error 
bars that represent the ensemble spread.  



In order to assess the accuracy of our 
algorithm during these seasons under the 
assumption of “perfect large-scale flow” we have 
also downscaled the corresponding NNRP set, 
results are presented in Fig. 11. The regression 
line shows good agreement between the observed 
and the NNRP-downscaled precipitation, and the 
R

2
 value shows that the calculations account for 

75% of the variance.  
The linear regression for the CFS1.0-

downscaled precipitation (Fig. 10) shows good 
agreement between observed and estimated 

values, very similar to that obtained when using 
NNRP as large-scale input (Fig. 11). The 
regression explains 67% of the variance, 
somewhat lower than that explained when using 
NNRP. The error bars show that the ensemble 
spread is a function of the mean-precipitation 
amounts; with larger uncertainty found for the 
larger mean values.  

 
 

 
 

(a) 

 
(b) 

 
Fig.8: Observed, predicted, and climatological mean DFJ-precipitation at each station for (a) the driest among the 
studied seasons, (b) the wettest among the studied seasons. Stations are identified following the naming in Fig. 5. 
WRD predictions use up to two nearest weather regimes i.e. WRD2, AN predictions use up to three nearest 
analogues i.e. AN3. 



 
(a) 

(b) 

Fig. 9: Observed vs. NNRP-dowscaled
at the 18 selected stations for the 
period 1981-2008. The full line represents the linear 
regression relationship between the observed and 
estimated values. The dashed line represents the y=x 
line, i.e., the linear regression for a perfect model.
WRD2 method. (b) AN3 method. 

Fig. 10: Observed vs. CFS1.0-dowscaled
DJF precipitation at the 18 selected stations for the 
seasons 2009-2010 and 2010-2011 (CFS1.0 was 
initialized in October 2009 and 2010, respectively).

 

 
dowscaled DJF precipitation 

 seasons within the 
2008. The full line represents the linear 

regression relationship between the observed and and 
estimated values. The dashed line represents the y=x 
line, i.e., the linear regression for a perfect model. (a) 

dowscaled (AN3 method) 
DJF precipitation at the 18 selected stations for the 

2011 (CFS1.0 was 
initialized in October 2009 and 2010, respectively). 

 

Fig 11: Observed vs. NNRP-downscaled (using the AN3 
method) DJF precipitation at the 18 selected stations for 
the seasons 2009-2010 and 2010

 
6. SUMMARY 
 

We presented two statistical downscaling 
methods to estimate precipitation at pre
determined stations. The methods ar
identifying daily large-scale past analogues of 
near-surface maps of winds, temperature and 
geopotential height (defined on 25
2.5° × 2.5° resolution) and correlating them with 
the past daily local precipitation. Two approaches 
were developed: one of them makes use of a 
classification of the large-
into regimes (WRD) and the other one is based on 
finding closest analogues without grouping the 
weather events into defined regimes (a “pure 
analogues” approach, AN). 

The methods were validated at 18 reliable 
(long-term records) stations using accurate large
scale input provided by the NCEP/NCAR 
reanalyses. Our validation results proved good 
deterministic skill of the algorithms as measured 
by the linear correlation between predicted and 
observed precipitation amounts

results reproduce the observed inter
spatial variability. The AN
provide more accurate estimations in reproducing 
extreme dry or wet seasons, as 
mean of the precipitation distribution associated 
with each weather-regime represents a poor 
representation of the distributions when these are 
skewed. 

After validation the method was used to 
downscale 2 seasons of the operational CFS1.0
ensemble seasonal forecasts. When used with an 
ensemble of large-scale forecasts our m
provides ensemble estimation as well. The mean
ensemble estimations at 18 stations were verified 
against observations. The verification shows good 
agreement between the observed and estimated 
precipitation for these two seasons. The spread of 

 
downscaled (using the AN3 

method) DJF precipitation at the 18 selected stations for 
2010 and 2010-2011. 
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the ensemble is shown to encompass the 
observations, confirming the consistency of the 
ensemble results. The ensemble provides 
probabilistic information that can be useful to 

decision making. 

Further improvement of the algorithm is 
possible by refining the weather-regimes 
classification or the identification of past 
analogues. This may be accomplished in several 
ways. First, a classification of weather regimes 
associated with precipitation would benefit from 
inclusion of physical variables at levels beyond the 
surface, for instance values of vorticity at upper 
levels. The inclusion of additional large-scale 
variables is expected to increase the variance 
explained by the method. Second, the 
determination of closest past analogues could be 
improved by including cross correlations between 
variables as is done in the calculation of 
Mahalanobis distances. Estimations of the 
precipitation associated with weather-regimes and 
of its uncertainty could be improved by re-
sampling events within the specific classes. 

The new updated CFS2.0 system is intended 
to provide more accurate large-scale forecasts 
and we expect the skill of the downscaled 
products to improve when CFS2.0 is used, too. 
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