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1 BACKGROUND 
 

1.1 Overview 
 

This project is a collaborative activity between the 
NASA Short-term Prediction Research and Transition 
(SPoRT) Center and the NOAA Hydrometeorology 
Testbed (HMT) to evaluate a SPoRT Advanced Infrared 
Sounding Radiometer (AIRS:  Aumann et al. 2003) 
enhanced moisture analysis product.  We test the 
impact of assimilating AIRS temperature and humidity 
profiles above clouds and in partly cloudy regions, using 
the three-dimensional variational Gridpoint Statistical 
Interpolation (GSI) data assimilation (DA) system 
(Developmental Testbed Center 2012) to produce a new 
analysis.  Forecasts of the Weather Research and 
Forecasting (WRF) model initialized from the new 
analysis are compared to control forecasts without the 
additional AIRS data.  We focus on some cases where 
atmospheric rivers caused heavy precipitation on the US 
West Coast.  We verify the forecasts by comparison with 
dropsondes and the Cooperative Institute for Research 
in the Atmosphere (CIRA) Blended Total Precipitable 
Water product. 
 
1.2  AIRS 
 

 
Figure 1.  The Aqua satellite (from http://airs.jpl.nasa.gov). 

 
AIRS is a radiometer aboard NASA’s polar-orbiting 

Aqua satellite (Figure 1).  It measures infrared radiation 
in 2378 frequency bands ranging from 3.7 to 15.4 
microns.  AIRS has a cross-track scanning geometry, 
observing 90 fields of view per scan, with a resolution of 
13.5 km at nadir and a swath width of about 1600 km.  
The observed top-of-atmosphere radiation is dependent 

on atmospheric temperature and the concentration of 
water vapor and other constituents of the atmosphere.  
Through an inversion process, profiles of temperature 
and water vapor are retrieved from AIRS radiometric 
observations (Aumann et al. 2003).  Since clouds are 
opaque to infrared radiation, profiles cannot be retrieved 
inside or below clouds, but useful retrievals can be 
obtained above clouds (as well as information on cloud 
top properties).  Coupled with a microwave radiometer 
(AMSU), AIRS is also able to retrieve profiles in partly 
cloudy regions. 

 
1.3 Atmospheric Rivers 

 
The objective of assimilation of AIRS profiles over 

the Pacific is to attempt to generate a near-real-time 
enhanced 3D moisture analysis product that could be 
used by West Coast Weather Forecast Offices (WFOs) 
and the Hydrometeorlogical Prediction Center (HPC) for 
diagnosing the location, extent, and magnitude of 
atmospheric rivers.  Atmospheric rivers are thin tongues 
of enhanced low-level water vapor and precipitation that 
propagate from the Intertropical Convergence Zone 
(ITCZ) northward and impact the West Coast of North 
America (Ralph et al. 2011).  They are responsible for 
the transport of large amounts of water vapor and can 
have a large impact on precipitation. In particular, they 
often lead to intense multi-day rain events on the 
western coast of North America during the winter 
season due to orographic lifting, sometimes resulting in 
flooding and landslides.   

 
1.4 Hypothesis 

 
The Global Forecast System (Yang et al. 2006), an 

analysis and prediction system based on WRF and run 
operationally by the National Center for Environmental 
Prediction (NCEP) Environmental Modeling Center 
(EMC), routinely assimilates AIRS radiances.  However, 
these radiances are used only in cloud-free areas.  
Because atmospheric rivers are typically associated 
with cloudy regions, the cloud-free AIRS radiances that 
are assimilated in the GFS may not fully capture these 
features.  In contrast, assimilation of AIRS profiles, 
which allow for the use of data above clouds and in 
partly cloudy regions, may provide an enhanced view of 
atmospheric river features.  Although data within and 
below clouds are excluded, we expect that using the 
available profile data in cloudy regions can augment the 



currently utilized observations and improve WRF model 
analyses and forecasts. 

The final SPoRT product blends a GFS analysis 
with AIRS observations using the GSI DA system to 
produce a 3D analysis of integrated water vapor.  This 
analysis can be used as either a situational awareness 
tool or for initialization of local EMS runs by West Coast 
Weather Forecast Offices. 

 
2 EXPERIMENT  

 
Figure 2.  Specific humidity at 500 mb in the AIRS retrieved 
product.  Each colored circle represents one satellite field of 

view.  The white missing areas within the swaths had a cloud at 
or near 500 mb.  The specific humidity is higher near the 

tropics and lower to the north as is typical.  There is also a 
band of elevated humidity running east-west near the center of 

the figure, corresponding to an atmospheric river. 
 

Figure 2 shows an example of the assimilated 
specific humidity retrievals at the 500 mb level.  A 
feature of this product is the flag for lowest cloud-free 
level.  In fields of view with partial cloud cover, we 
assimilate the AIRS retrieved profiles down to the lowest 
cloud-free level.  This contrasts to the operational 
methodology for AIRS radiance assimilation, which 
eliminates all AIRS observations in fields of view where 
clouds are present.    

The experiment consists of two model simulations.  
The first (control) run is initialized with a GFS analysis 
(Figure 3a).  The GFS does already include the affect of 
AIRS data through assimilation, but only at completely 
cloud-free locations.  The second (DA) assimilates the 
AIRS profiles into the GFS background to give a new 
analysis (Figure 3b), which becomes the initial condition 
for the data assimilation run.  Both model simulations 
have been configured to match the settings of the 
operational GFS environment. 
 Initial conditions for the two model runs are 
shown in Figure 3.  Figure 3a shows the initial total 
Precipitable water (TPW) field for the control run, which 
is also the background field for the AIRS assimilation.  
Figure 3b shows the TPW analysis after AIRS 
assimilation, which is the initial condition for the DA run.  
Figure 3c shows the assimilation increment (panel 

3a)  

 
3b) 

 
3c) 

 
Figure 3. a) Background total precipitable water (TPW) field; b) 

Analysis TPW field; c) Analysis increment, with assimilated 
observations marked by ellipses (color coded by the lowest 

cloud-free retrieval level. 
 

b minus panel a) given by the color scale on the bottom, 
overlaid with ellipses corresponding to locations of 
assimilated AIRS observations, color coded by the 
lowest cloud-free pressure level (color scale to right of 
figure). Parts of three swaths are seen, with missing
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Figure 4.18 UTC TPW from a) Control Run; b) DA Run; c) Increment (DA minus Control); d) CIRA analysis

  
areas where data were rejected due to too much cloud 
or other quality control criteria.  Green points have data 
down to the surface or low levels (700 mb or greater) 
while red points have data only down to the 400 mb 
level at best.  We can expect profiles with more vertical 
levels used (green points) to have a larger impact.  The 
impact of AIRS observations (measured by TPW 
increment) is near zero in most areas away from the 
observations. Both version 5 and 6 of AIRS profiles 
were assimilated but differences in analyses were found 
to be minimal, so we only present results from version 6 
profiles.   
 
3 RESULTS 
 
3.1 Comparison with CIRA TPW 
 

For both model runs, validation was performed 
based on 18 h forecasts.  We compare forecast total 
precipitable water (Figures 4a and 4b, with differences 
in 4c) to the CIRA Blended TPW analysis (Figure 4d; 
Kidder and Jones 2007). The most obvious change is a 
general reduction in TPW.  Systematic biases exist 

between the WRF, CIRA, and AIRS retrieved water 
vapor concentrations.  It is difficult to validate without 
first doing a bias correction because the biases are 
larger than the increments.  Table 1 shows statistics 
from this experiment, validated against the CIRA TPW.  
The CIRA TPW has been scaled by a constant factor of 
0.687 to match the means of the observations and 
analyses at the initial time (0 UTC) within the domain.  
Based on this metric, assimilation of AIRS increases the 
magnitude of the TPW bias, going from -.27 mm to -1.83 
mm.  This suggests that the AIRS humidity retrievals are 
biased low relative to the WRF fields.  The standard 
deviation is reduced in the assimilation run, which is an 
encouraging result.  The next step will be to bias correct 
the AIRS retrievals before assimilation in order to make 
the biases of the two forecasts similar in magnitude. 

 
 
Model Run Bias Stdev RMS 
Control -.27 3.09 3.09 
AIRS DA -1.83 2.57 3.15 
Table 1.  Statistics for 18h forecast total precipitable water (in 

mm) validated against the scaled CIRA TPW. 



 
Figure 5.  Detail of Figure 4a showing the locations of 

dropsondes deployed at approximately 18 UTC on 10 Mar 
2011. 

 
3.2 Validation against Dropsondes 
 
 The forecasts are also validated against dropsonde 
profiles from the Winter Storms and Pacific Atmospheric 
Rivers (WISPAR) field campaign (Ralph et al., 2011).  
The numbers 1 to 9 on Figure 5 indicate the positions of 
dropsondes used in this validation.  These were 
deployed in a transect across the atmospheric river a 
few hundred km off the California coastline.  The initial 
times for the dropsondes all occurred between 1826 and 
1917 UTC, making them all within 80 minutes of the 
analysis time.  Figure 6 shows the humidity profiles from 
five of the drops (odd numbers 1 to 9) in dashed lines 
with the two collocated forecast profiles in solid black 
(control run) and orange (assimilation run) lines.  There  

is little impact below 800 mb or above 500 mb, but the 
assimilation run matches the validation data more 
closely at intermediate levels in most cases.  This is 
verified by Figure 7, which shows the mean for the 
dropsondes, control run, and forecast run among all 9 
dropsondes, with the standard deviation and rms error 
for the two forecasts compared to the dropsondes.  The 
biases relative to the dropsondes are reduced between 
approximately 500 to 700 mb and the error standard 
deviations are reduced between 400 to 700 mb.).  We 
expect smaller impact near the surface where more data 
is removed by clouds and higher in the atmosphere 
where the radiative signal is smaller, so this is 
consistent with expectations.  
 
4 FUTURE WORK 

 
Several additional refinements and validations are 

planned.  We will test the use of a bias correction 
(scaling) for the AIRS profiles. Additional work is 
currently underway to evaluate the impact of these 
analyses on short-term precipitation forecasts by 
validating against NLDAS-2 precipitation analyses (Xia 
et al. 2012).  We plan to examine some additional cases 
from the winter of 2012-2013 and also do a layer-by-
layer comparison against a CIRA layer precipitable 
water product.  Finally, we will also test the assimilation 
of a neural network retrieval of AIRS profiles (Blackwell 
et al., 2011). 
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Figure 6.  Control (black) and Assimilation Run (orange) profiles of forecast (18h) specific humidity at dropsonde locations, along 

with dropsonde-measured profiles (green, dashed).  Numbers in the upper right corner of these plots correspond to positions 
indicated in white (numbers 1-9) on the 18h forecast maps in Figure 4a/b/d. 



 

                   
Figure 7.  Mean profiles of control, assimilation run, and dropsonde specific humidity, at the dropsonde locations.  Profiles of error 

standard deviation and RMS error of both WRF runs.  
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