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1. INTRODUCTION 

 Public safety, health, and threat mitigation are 

all of importance to emergency responders in the 

event of a disaster.  Harmful contaminants may be 

released into the atmosphere intentionally, as in the 

case of a terrorist attack, or unintentionally due to 

uncontrollable circumstances, such as accidents or 

natural disasters.  In either case, it is important to 

have a tool in place to enable first-responders to 

quickly and accurately determine the source and 

nature of the release.  Source-term estimation (STE) 

tools have been developed by many researchers [14, 

3, 12, 20, 22, 25, 10]  The STE methods that have 

been developed use contaminant concentration data 

from a carefully-placed network of sensors to re-

construct an atmospheric dispersion event in terms 

of its source(s) and their associated parameters. 

 Many of these STE methods adopt inverse 

problem methodology, in which a forward model is 

specified based on the assumed nature of the 

release event.  These models range in complexity as 

well as computational intensity.  For flat terrain with 

steady meteorological conditions, it has been shown 

that a fast-computing Gaussian plume model has 

been effective for event reconstruction [20, 2]. 

Other models may be suggested based on the 

operating conditions and plume assumptions [14, 

15].  

 The STE community has adopted different 

methodologies.  Some researchers prefer a 

deterministic approach, using adjoint models, 

genetic algorithms (GA), and other numerical 

optimization techniques [10, 1, 4, 3].  For instance, 

the Multi-Entity Field Approximation tool (MEFA), 

uses a GA to determine a hazard area and a cost 

function with optimization to infer the number of 

sources involved in a release event [3].   

The second methodology, and the one used in 

the present study, uses Bayesian inference to take a 

probabilistic approach to solving the STE problem.  

Dynamic Bayesian models have been used in 

conjunction with appropriate forward models to 

estimate the source-terms involved all the way down 

to the neighborhood scale [11, 14].  Researchers [25, 

26, 27] have used Bayesian inference to characterize 

release events with multiple sources where the 

number of sources is unknown a priori.  In the 

present study, an alternative method of source 

number quantification is proposed by coupling a 

Stochastic Event Reconstruction Tool (SERT) [20] 

with a composite model ranking tool.  It is 

important, especially in emergency response efforts, 

to get a complete picture of the dispersion event, 

including the number of sources involved, so that 

decision makers can develop an effective response 

plan.   

Real trial data from the FUSION field trials of 

2007 (FFT-07) data set [23] is used to develop and 

verify the Multi-Source Event Reconstruction Tool 

(MERT) presented in this study.  Researchers [17, 16] 

have conducted a comparative investigation of STE 

algorithms based on the FFT-07 data set.  In this 

study, we will use FFT-07 trial data to demonstrate 

the multi-source reconstruction capabilities of SERT 

for 1, 2, and 3 source cases, where the number of 

sources is treated as an unknown parameter in the 

reconstruction problem. 
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2. FORWARD MODEL 

 A data-driven Gaussian plume model [20] is 

selected as the forward model in the Bayesian 

inference framework.  It is computationally 

inexpensive and well-suited to the FFT-07 

continuous release trials, which are the focus of the 

present work.  The turnaround time for computation 

is a critical aspect of STE problems when the 

intended use is emergency response.  Any 

information regarding the event that is quickly 

discovered can potentially help first-responders first 

plan and execute their emergency efforts effectively.   

Sophisticated forward models are also an option 

if the release event requires additional capabilities in 

its forward model.  However, for the FFT-07 we 

found Gaussian plume models to be satisfactory 

because the experiments were performed over flat 

terrain and short distances.  A complete derivation 

of the Gaussian plume model can be found in [21] 

and the concentration at location in Cartesian space, 

Cm(x,y,z), may be calculated according to the 

following: 
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where Q is the emission rate, U is the average wind 

speed, H is the height of the release,   and   or the 

turbulent diffusion parameters in the crosswind and 

vertical directions, respectively.  These turbulent 

diffusion parameters are driven by the observed 

data in the sense that the coefficients in the Pasquill 

stability formulas [8] are determined stochastically 

within the Bayesian inference method.  Pasquill D 

type stability is assumed and this calculation is 

shown in Eq. 2. 
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The coefficients,   and   , are the stochastically 

determined model parameters which make this a 

data-driven forward model.  This data-driven 

approach to tune diffusion parameters has been 

shown to substantially improve source-term 

estimates over the use of empirically determined 

coefficients [20, 19]. 

3. BAYESIAN INFERENCE METHOD 

An inverse problem can generally be formulated 

as follows: 

     ( ) (3) 
where, d is a vector of observed concentration 

values and m is a vector of forward model 

parameters (e.g. location, emission strength, etc.). F 

would correspond to the chosen forward model, in 

this case, the Gaussian plume model.  Most Bayesian 

inference methods simplify Bayes’ rule to the 

following form [6]: 
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where,   ( | ) is the posterior probability density 

of the forward model parameters, m, given the 

observed concentration values, d.  ( | ) is the 

likelihood of the observations, given the set of 

model parameters and  ( ) is a set of prior 

probabilities (one for each parameter).  For instance, 

a dual source release would have the following set of 

model parameters: 
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Here,   represents the error variance for the model 

and measurement errors in a cumulative fashion, 

and is given an inverse gamma prior distribution 

with hyperparameters       and          [20].  

The 
 

 
 parameter is the emission rate, normalized by 

the average wind velocity, and given a Jeffrey’s prior 

[20].  The remaining parameters are given proper 

uniform priors within maximum and minimum limits.  

The   and   parameters are used to define the 

location of secondary sources.  This is depicted in 

Figure 1 and computed as follows: 
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 Our Bayesian inference formulation takes into 

account the limitations of a sensor.  Specifically, a 

real sensor has a detection threshold if a 

concentration of contaminant is present at the 

sensor, but it is below the detection limit such that 

the sensor cannot detect or quantify the presence of 

the contaminant.  To account for this possibility, a 

conditional likelihood formula is proposed and 

detailed in [20].  Markov Chain Monte Carlo (MCMC) 

via the Metropolis Algorithm [13] is then used to 

simulate samples from the posterior distribution.   

4. COMPOSITE MODEL RANKING TO DETERMINE 

SOURCE QUANTITY 

 As stated in the introduction, it is crucial to 

correctly identify and quantify the number of 

sources involved in a contaminant release scenario 

for a number of reasons.  The difficulty in this 

respect is that it is possible to closely match the 

observed concentrations at the sensor locations with 

concentrations predicted by a model with an 

incorrect number of sources.  For example, a truly 

dual source release may deposit certain 

concentrations across the sensor array, while a 

single source release, further upwind, may deposit 

very similar concentrations of material at those 

locations.  Because these are all possible scenarios, it 

is necessary to have a tool which can correctly 

quantify the number of sources involved in the 

release.  A composite model ranking tool, inspired by 

work in [7], uses a variety of metrics to evaluate 

dispersion model performance as it performs with a 

varying number of sources.  A variety of metrics for 

model evaluation has been proposed by the research 

community and it is clear that a measure of error 

Figure 1: Sample dual-source plume colored by contaminant concentration at approximately ground-level. The 
darker contours represent higher concentrations and the source locations are shown as circles.  d is the distance 
between sources and   is the angle between the primary and secondary source. 
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(scatter), bias, and correlation are all useful metrics 

for model performance [22, 18, 24, 5, 9].  Three 

individual metrics are combined to establish a single 

RANK metric in which each component (scatter, bias, 

and correlation) are weighted equally. 

 The first component to the RANK formula is the 

FAC2, which can be defined as follows: 

                                

    
 ̂

 
      

(7) 

 

where   ̂ is the predicted concentration at a given 

sensor location and   is the observed concentration 

at that same location.  This metric provides a 

measure of error or scatter to the composite ranking 

tool. 

 The second metric used is the Fractional Bias 

(FB) which is used to indicate a bias towards under 

or over-prediction and is calculated as 

    (
 ̅   ̅̂
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where  ̅ is the average observed concentration 

across all sensors and  ̅̂ is the average predicted 

concentration across all sensors.  The final 

component of the composite ranking metric is 

Pearson’s correlation coefficient (R), which adds a 

measure of correlation to the overall ranking 

method. R is calculated as follows: 
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The RANK metric is then computed in Eq. 10.  

Each component contributes equally and has a range 

of 0-1.  Therefore, the overall range of RANK is 0-3, 

with 0 being the lowest and 3 being the highest 

possible score.   
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The STE algorithm is run separately for single, 

dual, and three source settings and each run is then 

ranked.  The run with the highest RANK is then 

chosen as the answer with the correct number of 

sources. 

5.1 RESULTS  

 The FUSION Field Trial 2007 (FFT-07) [23] data 

set is a set of high resolution continuous and 

instantaneous tracer release experiments carried out 

at Dugway Proving Grounds, Utah by the United 

States Army.  This data set was released to STE 

algorithm developers to explore new methods and 

improve the abilities of existing algorithms.  Details 

of the field experiments are covered extensively in 

[23].   

 We focused on four trials which included one 

single-source release (Trial 7), two dual-source 

releases (Trials 27 and 40), and one three-source 

release (Trial 28).  In each of these trials, a propylene 

tracer was released in a continuous manner for 

approximately 15 minutes.  The plumes traveled past 

a dense grid of 100 sensors arranged in a rectangle 

spaced approximately 50m from one another and 

2m above ground.  The releases were also at a 

height of 2m.  Sensors that reported an error for 

more than 50% of the sampling time were discarded 

from the set. 

 Trial 40, a dual-source release, had good 

observations with no false readings and equally 

desirable wind conditions, which were steady and 

mostly of uniform direction.  48 out of the 100 

available sensors were used in the STE, resulting in 

source location estimate errors of approximately 6 

and 8 meters, shown in Figure 3.  Additionally, very 

tight posterior distributions were developed for the 

model parameters, as seen in Figure 2, where the 

outer contour line encompasses 90% of the 

posterior samples and the inner encompasses 50%.  

The white markers refer to the true values.  We see 

the marginal probabilities for each parameter along 

the diagonal, which show clear spikes where the 

most likely solution exists.  The cells are normalized 

with respect to maximum and minimum values for 
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each parameter and distances may be viewed as 

percent error.  As an example, source 1 is off in the 

x-direction by approximately 15%.  Figure  shows a 

comparison of observed concentrations vs. 

estimated concentrations at the sensor locations for 

a single, dual, and three-source estimate for Trial 40.  

We can see the bias, correlation, and scatter in these 

plots and note that the dual-source setting appears 

to be the most likely setting. 

 Trial 27 is a second dual-source release with a 

lesser number of reliable sensor data.  For this 

estimation, 57 of the 100 sensors were used and the 

resulting location errors for source 1 and 2 were 15 

and 25 meters, respectively, as shown in Figure 5. 

 Trial 28 is a three-source release with many 

sensors reporting error, which makes it a challenge 

to reconstruct with reasonable accuracy.  We can 

see in Figure 6 that source 1 and 3 estimates are 

fairly close, but the estimate for source 2 is 

approximately 48m off.  It is noteworthy, however, 

that the estimates are arranged linearly and spaced 

approximately correctly when compared to the 

arrangement of the true sources. 

 The last trial, Trial 7, is a single source release 

used to confirm that the ranking algorithm will 

choose a single source estimate over a dual or three-

source estimate.  The STE algorithm estimates the 

source location within 2m for this trial. 

5.2 COMPOSITE RANKING RESULTS 

 Estimates have been achieved, thus far, for 

single, dual, and three-source settings for each trial.  

It is now necessary to apply the RANK formula to 

each case to determine which estimate is correct for 

each individual trial.  We refer back to Section 4 for 

the development of the RANK formula and the 

components included. 

 Figure 7. shows the composite ranking for each 

case and is colored by the individual components 

which make up the RANK formula.  We remind the 

readers that the scale is from 0 (worst) to 3 (best) 

and scores are only relevant within each individual 

trial.  We see that in each case, the setting with the 

correct number of sources scores the highest, and is 

therefore chosen as the correct setting. 

6. SUMMARY 

 Single, dual, and three-source tracer 

experiments from the FFT-07 dataset have been 

used to test the performance of the presented 

stochastic multi-source event reconstruction tool 

(SERT).  A composite ranking system has been 

proposed to quantify the number of sources 

involved in each release event.  Both the STE and 

RANK models perform well in estimating the source 

parameters and successfully determining the correct 

number of sources involved in a certain event.  
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Figure 3: FFT-07 Trial 40 source location estimates (s1 and s2) with errors of 8m and 6m.  
Magnitudes of concentrations are reported in log(ng/m^3) and zero sensors are colored white. 

Figure 2: FFT-07 Trial 40 bivariate posterior distributions with marginal distributions along the diagonal.  
Each cell is normalized with respect to max/min.  Outer contour encompasses 90% of samples and inner 
counter encompasses 50% of posterior samples.  White markers represent true values. 
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Figure 4: Observed sensor concentrations for FFT-07 Trial 40 vs. computed sensor concentrations for single, dual, and three source settings. 

Figure 5: FFT-07 Trial 27 source location estimates (s1 and s2) with errors of 15m and 25m.  Magnitudes of 
concentrations are reported in log(ng/m^3) and zero sensors are colored white. 
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Figure 7: RANK for each trial tested.  Colors correspond to individual ranking component as 
shown in legend. Trial 7 is a truly single-source release, Trials 27 and 40 are dual-source, and 
Trial 28 is a three-source release. 

Figure 6: FFT-07 Trial 28 source location estimates (s1 and s2) with errors of 7.5m, 21.7m, and 
48.3m.  Magnitudes of concentrations are reported in log(ng/m^3) and zero sensors are 
colored white. 

 


