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1 Introduction

The phenomenon of blocking can make local and
regional forecasting less reliable [1]. However, pre-
vious results have shown that with the use of cer-
tain stability indices both the onset and decay
of blocking may be relatively easier to diagnose
[1, 7, §]. The aforementioned results showed that
in an approximately barotropic flow the sum of the
positive local Lyapunov exponents is approximated
well by integrating enstrophy (squared vorticity)
over a finite bounded region. This quantity has
been termed area integrated enstrophy (IRE) and
it can be used to determine the stability or pre-
dictability within a flow regime [7]. More specifi-
cally, low values of IRE imply a more predictable
or stable state, while high values of IRE imply a
more unstable state in the flow. IRE has been
used successfully to identify the onset and decay of
blocking states in the atmosphere. It was shown
in [7] that the IRE reaches a relative maximum
value at block onset and decay, while it decreases
to a relative minimum during the block as the flow
stabilizes.

The IRE may have utility beyond the detection
of blocking onset and decay. It may also be an
effective diagnostic to identify flow regime change
generally. The weakness in this technique is locat-
ing a certain threshold value at which the flow can
be identified as having undergone regime transfor-
mation. In this work we have identified the ad-
vection of enstrophy as a useful diagnostic in iden-
tifying blocking onset and decay, and potentially
even more general regime change. To that end,
several blocking events were tested and the enstro-
phy advection was found to be a useful diagnos-
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tic. In addition, the criterion of Weiss [12], which
is similar to fluid trapping [4] and which we use
synonymously, can be employed to locate strain
dominated regions of the flow and in conjunction
with the enstrophy advection it is conjectured to
be useful in identifying blocking regions. A new
equation based on fluid trapping is then derived
that shows the physical processes behind the way
in which enstrophy advection works as a diagnos-
tic. The second part of the paper is concerned
with applications of the diagnostics to four North-
ern Hemisphere blocking occurrences.

The purpose of this work is to demonstrate
that by the use of IRE and enstrophy advection
blocking events can be more successfully identi-
fied, which may lead to more accurate forecasting
of blocking. The simplicity of enstrophy advection
as a stability index may make it particularly useful
as a diagnostic in forecasting situations.

2 Local Lyapunov Exponents

The stability characteristics mentioned above, IRE
and enstrophy advection, were derived from a care-
ful consideration of local Lyapunov exponents for
the barotropic vorticity equation. Therefore, a
brief description of local Lyapunov exponents is
not out of place. These are defined by A; ({o,T) =
%nlogui for an initial vorticity field (p and time T' =
nAt. The v; are the eigenvalues of M*M, where
M = [I}=", A(kAt) and A(t) is the lineariza-
tion operator of the barotropic vorticity equation
at ¢(t). The local Lyapunov exponents thus pro-
vide a measure of divergence of nearby trajectories
for small time.

In order to show that the IRE is approximated
by the sum of the positive local Lyapunov expo-
nents the barotropic vorticity equation for an in-
compressible, inviscid fluid is considered. We now
sketch the argument given in [5]. For a given



streamfunction ¥, where V2V = (, the barotropic
vorticity equation can be written in the form,
ov2u
ot

+J (¥, V2T) =0. (1)

To model blocked flow, a streamfunction of the
form

U =14(y) + ¢ (2,y) (2)
can be considered, where
1/)/(1‘7 y) = w(y)eikx7 (3)

e., ¥ describes a zonal flow with superimposed
stationary waves [2].

Now a Crank-Nicholson scheme can be applied
to the linearized barotropic vorticity equation to
obtain the result that the enstrophy integrated
over a finite and bounded region can be approxi-
mated with reasonable accuracy by the sum of the
positive local Lyapunov exponents. It was found in
[5] that the eigenvalues of the the operator A+ A*,
where A is the linearization operator, are a good
approximation of the local Lyapunov exponents for
small values of time.

3 IRE

Recent work [1, 5, 7, 8] has shown the value of the
IRE as a diagnostic for block onset and block de-
cay. Asshown in [7], the IRE was found to increase
sharply at block onset, and then decrease to a local
minimum. The IRE was seen to increase again at
block decay. This dynamical behavior was shown
to occur for several case studies [1, 7, 8]. In par-
ticular, in [7] it was shown to occur for three win-
ter season blocking events in the Southern Hemi-
sphere. Moreover, in [1] the IRE was used to ex-
amine a three year period of blocking occurrences
across the entire Northern Hemisphere with simi-
lar results. In [8] the block that occurred over the
European part of Russia that brought devastat-
ing high temperatures was considered and similar
results were obtained. It is believed that the dy-
namical behavior of blocks shown by the IRE holds
generally.

4 Enstrophy Advection

As was shown in [5] and as sketched in section (2)
above, to a good approximation we may take

ZA“/@ (4)

where the integral is over a fixed, finite, bounded
region. Note that the A\; > 0 change with time,
and thus we may consider the change of their sum,
>, 50 Ais With time as follows. We use the trans-
port theorem and differentiate (4) under the inte-

gral:
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dt dt/<
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where we have assumed an incompressible friction-
less barotropic flow. Therefore, the change in the
stability characteristic over time can be approxi-
mated by the integral — [ V- V(2. Moreover, since
the quantity —V - V(? determines the sign of the
integral we may consider the enstrophy advection,
—V -V(?, as an indicator of stability. The dynam-
ical stability can be determined in the following
way. If =V - V(2 < 0, the flow is becoming more
stable. On the other hand, if =V - V(? > 0, the
flow is becoming more unstable. Regions in which
—V - V(2% changes from negative to positive are
where a local maximum in instability is expected.

Another way of obtaining a similar result is
by considering Lyapunov functions. A Lyapunov
function is a positive definite function which can
be used to show the Lyapunov stability or instabil-
ity of a flow by either the positivity or negativity of
the derivative, respectively. In fact, V(¢) = [ ¢?
can be taken as a Lyapunov function. Then, by
taking the material derivative of V, similar results
as above are achieved.

More concretely, a function V(z) is called pos-
itive definite if it is positive everywhere in some
domain, but with V(0) = 0. Consider the differen-
tial equation %X = f(z), defined for all z in some
domain. If f ( ) = 0 and there exists a function
V(x) defined in a neighborhood of = 0 such that
4V () is positive in a neighborhood of z = 0, then
the equilibrium solution is unstable in the sense of
Lyapunov. That is, initially close trajectories di-
verge. This theorem can b;e applied to the system
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of differential equations <~ = 0 to obtain a result

similar to that in equation (5).

5 Fluid Trapping

Another potentially useful diagnostic for determin-
ing stability in a barotropic flow is the Okubo-
Weiss criterion; see [12]. In [12], Weiss considered
a two-dimensional, inviscid, incompressible fluid.



Taking the symmetric part of the stress tensor S,

and in order to simplify calculations, the follow-
du ov

ing quantities 0,%, p were defined as 0 = 3= — Jy

b=52+9 5y and p =6 + it It was found that

trS% = = (up — ¢%) (6)

DN | =

where ( is the relative vorticity. It can also be
shown that incompressibility implies

div (V- VV) = 5 (uE - ¢?). (7)

DN | =

Equation (6) or (7) can be used to locate regions
in the fluid that are strain dominated and regions
that are vorticity dominated by means of the sign
of (7), i.e., either positive or negative. While con-
sidering the enstrophy cascade in two-dimensional
turbulence, it was shown in [3] that enstrophy
advection should be preferentially positive in re-
gions that are strain dominated, that is, where
(uﬁf CQ) > 0. Thus, the Okubo-Wiess criterion
can likely be successfully used with enstrophy ad-
vection to determine regions of stability or insta-
bility in the flow.

If it holds true that regions of strain are turbu-
lent in a two-dimensional sense, then the hypoth-
esis of frictionless flow can be dropped and we can
start with the barotropic vorticity equation in the
form [10]

d. 1,
6= 2V ®)

where R is the Reynolds number. Then it can be

shown that
d 2
G =3 [ o Q

for small Reynolds numbers. Thus, the stability
implied by (9) may hold at times between block
onset and decay. For large Reynolds numbers on
the other hand, or as R — oo, our original cal-
culation goes through without change. This may
apply at block onset and decay.

Weiss’s original assumption of a slowly varying u
may not hold for large times. However, for block-
ing, which can be thought of as a synoptic scale
phenomenon with time measured in days, we be-
lieve the time scale to be sufficiently small for the
Okubo-Weiss criterion to be useful.

6 Advection Equation

Now, using fluid trapping, an equation is derived
which elucidates the physical processes by which

enstrophy is advected in an incompressible, fric-
tionless barotropic flow. First, the horizontal equa-
tions of motion are considered, in the form

ou ou ou 09

and

v ov v ¢

— 4+ u—+v—=—7—fu+ F

ot ox y Ay / Y
where the F terms represent friction/viscosity.
Now, the divergence of the equations can be
taken:
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Note that since we have assumed incompressibil-
ity the continuity equation is simply

Ou Ov
a.. a3, = 07 10
or gz = —g—;. This can be used to simplify the

divergence above to get

<8v Ou Oudv
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where ( is relative vorticity.

Recall that the Okubo-Weiss criterion is
%(E2 - {2), where pufi = E? and E is the total
deformation. The expression % (E2 — Qz) may be
simplified by means of the continuity equation (10)

ov O ou 0
to get 2 (5254 — 2298). Then

E? — (% = -2V2¢p + 2fC.

Therefore, an equation for the enstrophy is ob-
tained:

2 =2V2% — 2f¢ + E>. (12)
Now taking the derivative of (12), it can be seen
that 8(2 8¢ 8( OE?
2 —
ot 2V 2o 625 ot
OE?
= -2 . = 2 .
fVy V(f ¢)+ fV-V{+ —— o
Recall that by our assumptions,
2
9y, V¢t (13)

ot



Thus by (13) we may write,

) OB
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OFE?
=4fVag -V +2fVyg Vg + (14)

ot ’
where the relative vorticity ¢ has been partitioned
into its geostrophic and ageostrophic components.
Hence, the enstrophy advection may be explained
by the advection of geostrophic vorticity by the
geostrophic wind — vorticity advection + the time
tendency of squared total deformation. More-
over, it may be thought of as an advection by the
ageostrophic wind also. A thorough investigation
of how the terms interact to produce enstrophy will
not be given here, but in later work by the authors.

7 Data

The data set used in this study was the National
Center for Environmental Prediction (NCEP)
and National Center for Atmospheric Research
(NCAR) gridded re-analysis data [9].  These
data were provided on 2.5° by 2.5° latitude-
longitude grids available on 17 mandatory levels
from 1000 mb to 10 mb at 6-h intervals daily at
(http://ersl.noaa.gov/psd/data/reanalysis/). In
this study, the v and v wind components were used
in order to calculate the enstrophy advection.

8 Analysis

The blocking criterion given in [6] was used to de-
termine the onset and decay times for the Northern
Hemisphere blocking events shown in table 1, with
the blocking intensity (BI) definition given in [11].

Date BI LON
January 6-12, 2012 | 3.69 | 60 E
January 9-16, 2012 | 3.55 | 20 W
January 12-27, 2012 | 5.01 | 130 W
January 17-29, 2012 | 3.61 | 60 E

Table 1: January 2012 blocking events. Block in-
tensity and longitude at block onset.

In this short note only the contours of enstrophy
advection for the block from Jan. 12-27, 2012 are
provided. The analyses of the other blocks listed
in table 1 are analogous to the Jan. 12-27 block
and will be presented in further studies. Now, the

instability predicted by the IRE at block onset [7,
8] can be seen as contours of positive enstrophy
advection over the region of the block in figures 1
and 2. The instability can be seen as solid contours
of enstrophy advection over the blocking region,
while stability can be seen as dashed contours.
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Figure 1: Jan. 11th contours of enstrophy ad-
vection. Block onset instability is shown. Solid
contours are positive enstrophy advection, dashed
contours are negative enstrophy advection.
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Figure 2: Jan. 12th contours of enstrophy advec-
tion. Block onset instability is shown.
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Figure 3: Jan. 13th contours of enstrophy advec-
tion. The block is beginning to stabilize.
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Figure 4: Jan. 27th contours of enstrophy advec-
tion. Block decay instability is shown.

By Jan. 13 (see figure 3) the instability from
block onset is dying out and the block is stabiliz-
ing. Figure 4 shows a resurgence in instability at
block decay, as predicted in [7, 8]. In section (4) it
was shown that there should be a local maximum
in instability between areas of negative enstrophy
advection and positive enstrophy advection. Such
areas can be seen in figures 1,2, and 4, indicating
instability as was expected from the IRE [7].

9 Discussion

In [5] blocking was defined as a quasi-stationary
state with a quasi-barotropic structure. In this
short note, a barotropic structure has been em-
ployed as a model of the atmosphere to derive
a new measure of stability /instability to identify
blocking onset and decay: the enstrophy advec-
tion. Plots of enstrophy advection were provided
for the Jan. 12-27, 2012 Northern Hemisphere
blocking event. As can be seen in the plots,
the enstrophy advection demarcates the instabil-
ity and stability inherent in a blocking event as
predicted by the IRE. Thus, the enstrophy advec-
tion was found to be a useful diagnostic. In addi-
tion, an equation relating enstrophy advection to
ageostrophic vorticity advection and deformation
tendency was derived.

References

[1] H. Athar, and A.R. Lupo, 2010: Scale and sta-
bility analysis of blocking events from 2002-
2004: A case study of an unusually persis-
tent blocking event leading to a heat wave
in the Gulf of Alaska during August 2004.
Adv. Met., 2010, 15 pp, Article ID 610263,
doi:10.1155/2010/610263.

[2] F.J. Beron-Vera, M.J. Olascoaga, M.G.
Brown, H. Kocak, and II. Rypina, 2010:
Invariant-tori-like Lagrangian coherent struc-

tures in geophysical flows. Chaos, 20,
doi:10.1063/1.3271342.

[3] S. Chen, R.E. Ecke, G.L. Eyink, X.
Wang, and Z. Xiao, 2003: Physical
mechanism of the two-dimensional en-
strophy cascade. Phys. Rev. Lett., 91,

doi:10.1103/PhysRevLett.91.214501.

[4] R.A. Cohen, and D.M. Schultz, 2005: Con-
traction rate and its relationship to fontogen-
esis, the lyapunov exponent, fluid trapping,
and airstream boundaries. Mon. Wea. Rewv,
133, 1353-1369.

[5] V.P. Dymnikov, Y.V. Kazantsev, and V.V.
Kharin, 1992: Information entropy and lo-
cal Lyapunov exponents of barotropic at-

mospheric circulation. Izv. Atmos. Oceanic
Phys., 28, 425-432.

[6] A.R. Lupo, and P.J. Smith, 1995: Climato-
logical features of blocking anticyclones in the
Northern Hemisphere. Tellus, 47A, 439-456.



7]

18]

9]

[10]

[11]

[12]

A.R. Lupo, L.I. Mokhov, S. Dostoglou, A.R.
Kunz, and J.P. Burkhardt, 2007: The impact
of the planetary scale on the decay of blocking
and the use of phase diagrams and enstrophy
as a diagnostic. Izv. Atmos. Oceanic Phys.,
42, 45-51.

A.R. Lupo, LI. Mokhov, M.G. Akperov, A.V.
Cherokulsky, and H. Athar, 2012: A dynamic
analysis of the role of the planetary and syn-
optic scale in the summer of 2010 blocking
episodes over the European part of Russia.
Adv. Meteor., 2012, Article ID 584257, 11 pp,
doi:10.1155/2012/584257.

E. Kalnay, M. Kanamitsu, R. Kistler et al,
1996: The NCEP/NCAR 40-year reanalysis
project. Bull. Amer. Meteor. Soc., 77, 437-
471.

W.H. Matthaeus, and D. Montgomery, 1980:
Selective decay hypothesis at high mechanical
and magnetic Reynolds numbers. Ann. N.Y.
Acad. Sci., 357, 203-222.

J.M. Wiedenmann, A.R. Lupo, I.I. Mokhov,
and E. Tikhonova, 2002: The climatology of
blocking anticyclones for the Northern and
Southern Hemisphere: Block Intensity as a
diagnostic. J. Climate, 15, 3459-3473.

J. Weiss, 1991: The dynamics of enstrophy
transfer in two-dimensional hydrodynamics.
Physica D, 48, 273-294.



