
25th Conference on Climate Variability and Change/93rd Annual Meeting of the American
Meteorological Society, 6-10 January 2013, Austin, TX

13A.4 Using Enstrophy Transport as a Diagnostic to

Identify Flow Regime Transformation

Andrew D. Jensen∗1, Anthony R. Lupo1, and Igor I. Mokhov2

1Department of Soil, Environmental, and Atmospheric Science, University of

Missouri-Columbia
2A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

1 Introduction

The phenomenon of blocking can make local and
regional forecasting less reliable [1]. However, pre-
vious results have shown that with the use of cer-
tain stability indices both the onset and decay
of blocking may be relatively easier to diagnose
[1, 7, 8]. The aforementioned results showed that
in an approximately barotropic �ow the sum of the
positive local Lyapunov exponents is approximated
well by integrating enstrophy (squared vorticity)
over a �nite bounded region. This quantity has
been termed area integrated enstrophy (IRE) and
it can be used to determine the stability or pre-
dictability within a �ow regime [7]. More speci�-
cally, low values of IRE imply a more predictable
or stable state, while high values of IRE imply a
more unstable state in the �ow. IRE has been
used successfully to identify the onset and decay of
blocking states in the atmosphere. It was shown
in [7] that the IRE reaches a relative maximum
value at block onset and decay, while it decreases
to a relative minimum during the block as the �ow
stabilizes.
The IRE may have utility beyond the detection

of blocking onset and decay. It may also be an
e�ective diagnostic to identify �ow regime change
generally. The weakness in this technique is locat-
ing a certain threshold value at which the �ow can
be identi�ed as having undergone regime transfor-
mation. In this work we have identi�ed the ad-
vection of enstrophy as a useful diagnostic in iden-
tifying blocking onset and decay, and potentially
even more general regime change. To that end,
several blocking events were tested and the enstro-
phy advection was found to be a useful diagnos-
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tic. In addition, the criterion of Weiss [12], which
is similar to �uid trapping [4] and which we use
synonymously, can be employed to locate strain
dominated regions of the �ow and in conjunction
with the enstrophy advection it is conjectured to
be useful in identifying blocking regions. A new
equation based on �uid trapping is then derived
that shows the physical processes behind the way
in which enstrophy advection works as a diagnos-
tic. The second part of the paper is concerned
with applications of the diagnostics to four North-
ern Hemisphere blocking occurrences.
The purpose of this work is to demonstrate

that by the use of IRE and enstrophy advection
blocking events can be more successfully identi-
�ed, which may lead to more accurate forecasting
of blocking. The simplicity of enstrophy advection
as a stability index may make it particularly useful
as a diagnostic in forecasting situations.

2 Local Lyapunov Exponents

The stability characteristics mentioned above, IRE
and enstrophy advection, were derived from a care-
ful consideration of local Lyapunov exponents for
the barotropic vorticity equation. Therefore, a
brief description of local Lyapunov exponents is
not out of place. These are de�ned by λi (ζ0, T ) =
1
2n logνi for an initial vorticity �eld ζ0 and time T =
n∆t. The νi are the eigenvalues of M∗M , where
M =

∏k=n
k=−nA (k∆t) and A(t) is the lineariza-

tion operator of the barotropic vorticity equation
at ζ(t). The local Lyapunov exponents thus pro-
vide a measure of divergence of nearby trajectories
for small time.
In order to show that the IRE is approximated

by the sum of the positive local Lyapunov expo-
nents the barotropic vorticity equation for an in-
compressible, inviscid �uid is considered. We now
sketch the argument given in [5]. For a given
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streamfunction Ψ, where ∇2Ψ = ζ, the barotropic
vorticity equation can be written in the form,

∂∇2Ψ

∂t
+ J

(
Ψ,∇2Ψ

)
= 0. (1)

To model blocked �ow, a streamfunction of the
form

Ψ = ψ(y) + ψ′(x, y) (2)

can be considered, where

ψ′(x, y) = ψ(y)eikx, (3)

i.e., Ψ describes a zonal �ow with superimposed
stationary waves [2].
Now a Crank-Nicholson scheme can be applied

to the linearized barotropic vorticity equation to
obtain the result that the enstrophy integrated
over a �nite and bounded region can be approxi-
mated with reasonable accuracy by the sum of the
positive local Lyapunov exponents. It was found in
[5] that the eigenvalues of the the operator A+A∗,
where A is the linearization operator, are a good
approximation of the local Lyapunov exponents for
small values of time.

3 IRE

Recent work [1, 5, 7, 8] has shown the value of the
IRE as a diagnostic for block onset and block de-
cay. As shown in [7], the IRE was found to increase
sharply at block onset, and then decrease to a local
minimum. The IRE was seen to increase again at
block decay. This dynamical behavior was shown
to occur for several case studies [1, 7, 8]. In par-
ticular, in [7] it was shown to occur for three win-
ter season blocking events in the Southern Hemi-
sphere. Moreover, in [1] the IRE was used to ex-
amine a three year period of blocking occurrences
across the entire Northern Hemisphere with simi-
lar results. In [8] the block that occurred over the
European part of Russia that brought devastat-
ing high temperatures was considered and similar
results were obtained. It is believed that the dy-
namical behavior of blocks shown by the IRE holds
generally.

4 Enstrophy Advection

As was shown in [5] and as sketched in section (2)
above, to a good approximation we may take∑

λi>0

λi ≈
∫
ζ2, (4)

where the integral is over a �xed, �nite, bounded
region. Note that the λi > 0 change with time,
and thus we may consider the change of their sum,∑
λi>0 λi, with time as follows. We use the trans-

port theorem and di�erentiate (4) under the inte-
gral:

d
(∑

λi>0 λi
)

dt
≈ d

dt

∫
ζ2

=

∫
∂ζ2

∂t
=

∫
2ζ
∂ζ

∂t

= −
∫

2ζV · ∇ζ = −
∫
V · ∇ζ2, (5)

where we have assumed an incompressible friction-
less barotropic �ow. Therefore, the change in the
stability characteristic over time can be approxi-
mated by the integral −

∫
V ·∇ζ2. Moreover, since

the quantity −V · ∇ζ2 determines the sign of the
integral we may consider the enstrophy advection,
−V ·∇ζ2, as an indicator of stability. The dynam-
ical stability can be determined in the following
way. If −V · ∇ζ2 < 0, the �ow is becoming more
stable. On the other hand, if −V · ∇ζ2 > 0, the
�ow is becoming more unstable. Regions in which
−V · ∇ζ2 changes from negative to positive are
where a local maximum in instability is expected.
Another way of obtaining a similar result is

by considering Lyapunov functions. A Lyapunov
function is a positive de�nite function which can
be used to show the Lyapunov stability or instabil-
ity of a �ow by either the positivity or negativity of
the derivative, respectively. In fact, V (ζ) =

∫
ζ2

can be taken as a Lyapunov function. Then, by
taking the material derivative of V, similar results
as above are achieved.
More concretely, a function V (x) is called pos-

itive de�nite if it is positive everywhere in some
domain, but with V (0) = 0. Consider the di�eren-
tial equation dx

dt = f(x), de�ned for all x in some
domain. If f(0) = 0 and there exists a function
V (x) de�ned in a neighborhood of x = 0 such that
d
dtV (x) is positive in a neighborhood of x = 0, then
the equilibrium solution is unstable in the sense of
Lyapunov. That is, initially close trajectories di-
verge. This theorem can be applied to the system

of di�erential equations dζ2

dt = 0 to obtain a result
similar to that in equation (5).

5 Fluid Trapping

Another potentially useful diagnostic for determin-
ing stability in a barotropic �ow is the Okubo-
Weiss criterion; see [12]. In [12], Weiss considered
a two-dimensional, inviscid, incompressible �uid.
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Taking the symmetric part of the stress tensor S,
and in order to simplify calculations, the follow-
ing quantities θ, ψ, µ were de�ned as θ = ∂u

∂x −
∂v
∂y ,

ψ = ∂v
∂x + ∂u

∂y , and µ = θ + iψ. It was found that

trS2 =
1

2

(
µµ− ζ2

)
(6)

where ζ is the relative vorticity. It can also be
shown that incompressibility implies

div (V · ∇V ) =
1

2

(
µµ− ζ2

)
. (7)

Equation (6) or (7) can be used to locate regions
in the �uid that are strain dominated and regions
that are vorticity dominated by means of the sign
of (7), i.e., either positive or negative. While con-
sidering the enstrophy cascade in two-dimensional
turbulence, it was shown in [3] that enstrophy
advection should be preferentially positive in re-
gions that are strain dominated, that is, where(
µµ− ζ2

)
> 0. Thus, the Okubo-Wiess criterion

can likely be successfully used with enstrophy ad-
vection to determine regions of stability or insta-
bility in the �ow.
If it holds true that regions of strain are turbu-

lent in a two-dimensional sense, then the hypoth-
esis of frictionless �ow can be dropped and we can
start with the barotropic vorticity equation in the
form [10]

d

dt
ζ =

1

R
∇2ζ, (8)

where R is the Reynolds number. Then it can be
shown that

d

dt

∫
ζ2 = − 2

R

∫
(∇ζ)

2
, (9)

for small Reynolds numbers. Thus, the stability
implied by (9) may hold at times between block
onset and decay. For large Reynolds numbers on
the other hand, or as R −→ ∞, our original cal-
culation goes through without change. This may
apply at block onset and decay.
Weiss's original assumption of a slowly varying µ

may not hold for large times. However, for block-
ing, which can be thought of as a synoptic scale
phenomenon with time measured in days, we be-
lieve the time scale to be su�ciently small for the
Okubo-Weiss criterion to be useful.

6 Advection Equation

Now, using �uid trapping, an equation is derived
which elucidates the physical processes by which

enstrophy is advected in an incompressible, fric-
tionless barotropic �ow. First, the horizontal equa-
tions of motion are considered, in the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂φ

∂x
+ fv + Fx

and

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂φ

∂y
− fu+ Fy

where the F terms represent friction/viscosity.
Now, the divergence of the equations can be
taken:

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂φ

∂x
+ fv + Fx

)
+

∂

∂y

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂φ

∂y
− fu+ Fy

)
Note that since we have assumed incompressibil-

ity the continuity equation is simply

∂u

∂x
+
∂v

∂y
= 0, (10)

or ∂u
∂x = −∂v∂y . This can be used to simplify the

divergence above to get

2

(
∂v

∂x

∂u

∂y
− ∂u

∂x

∂v

∂y

)
= −∇2φ+ fζ (11)

where ζ is relative vorticity.
Recall that the Okubo-Weiss criterion is

1
2

(
E2 − ζ2

)
, where µµ = E2 and E is the total

deformation. The expression 1
2

(
E2 − ζ2

)
may be

simpli�ed by means of the continuity equation (10)

to get 2
(
∂v
∂x

∂u
∂y −

∂u
∂x

∂v
∂y

)
. Then

E2 − ζ2 = −2∇2φ+ 2fζ.

Therefore, an equation for the enstrophy is ob-
tained:

ζ2 = 2∇2φ− 2fζ + E2. (12)

Now taking the derivative of (12), it can be seen
that

∂ζ2

∂t
= 2∇2 ∂φ

∂t
− 2f

∂ζ

∂t
+
∂E2

∂t

= −2fVg · ∇
(

1

f
∇2φ

)
+ 2fV · ∇ζ +

∂E2

∂t
.

Recall that by our assumptions,

∂ζ2

∂t
= −V · ∇ζ2. (13)
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Thus by (13) we may write,

−V · ∇ζ2 = −2fVg · ∇ζg + 2fV · ∇ζ +
∂E2

∂t

= 2fVag · ∇ (ζg + ζ) +
∂E2

∂t

= 4fVag · ∇ζg + 2fVag · ∇ζag +
∂E2

∂t
, (14)

where the relative vorticity ζ has been partitioned
into its geostrophic and ageostrophic components.
Hence, the enstrophy advection may be explained
by the advection of geostrophic vorticity by the
geostrophic wind − vorticity advection + the time
tendency of squared total deformation. More-
over, it may be thought of as an advection by the
ageostrophic wind also. A thorough investigation
of how the terms interact to produce enstrophy will
not be given here, but in later work by the authors.

7 Data

The data set used in this study was the National
Center for Environmental Prediction (NCEP)
and National Center for Atmospheric Research
(NCAR) gridded re-analysis data [9]. These
data were provided on 2.5◦ by 2.5◦ latitude-
longitude grids available on 17 mandatory levels
from 1000 mb to 10 mb at 6-h intervals daily at
(http://ersl.noaa.gov/psd/data/reanalysis/). In
this study, the u and v wind components were used
in order to calculate the enstrophy advection.

8 Analysis

The blocking criterion given in [6] was used to de-
termine the onset and decay times for the Northern
Hemisphere blocking events shown in table 1, with
the blocking intensity (BI) de�nition given in [11].

Date BI LON
January 6-12, 2012 3.69 60 E
January 9-16, 2012 3.55 20 W
January 12-27, 2012 5.01 130 W
January 17-29, 2012 3.61 60 E

Table 1: January 2012 blocking events. Block in-
tensity and longitude at block onset.

In this short note only the contours of enstrophy
advection for the block from Jan. 12-27, 2012 are
provided. The analyses of the other blocks listed
in table 1 are analogous to the Jan. 12-27 block
and will be presented in further studies. Now, the

instability predicted by the IRE at block onset [7,
8] can be seen as contours of positive enstrophy
advection over the region of the block in �gures 1
and 2. The instability can be seen as solid contours
of enstrophy advection over the blocking region,
while stability can be seen as dashed contours.

Figure 1: Jan. 11th contours of enstrophy ad-
vection. Block onset instability is shown. Solid
contours are positive enstrophy advection, dashed
contours are negative enstrophy advection.

Figure 2: Jan. 12th contours of enstrophy advec-
tion. Block onset instability is shown.
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Figure 3: Jan. 13th contours of enstrophy advec-
tion. The block is beginning to stabilize.

Figure 4: Jan. 27th contours of enstrophy advec-
tion. Block decay instability is shown.

By Jan. 13 (see �gure 3) the instability from
block onset is dying out and the block is stabiliz-
ing. Figure 4 shows a resurgence in instability at
block decay, as predicted in [7, 8]. In section (4) it
was shown that there should be a local maximum
in instability between areas of negative enstrophy
advection and positive enstrophy advection. Such
areas can be seen in �gures 1,2, and 4, indicating
instability as was expected from the IRE [7].

9 Discussion

In [5] blocking was de�ned as a quasi-stationary
state with a quasi-barotropic structure. In this
short note, a barotropic structure has been em-
ployed as a model of the atmosphere to derive
a new measure of stability/instability to identify
blocking onset and decay: the enstrophy advec-
tion. Plots of enstrophy advection were provided
for the Jan. 12-27, 2012 Northern Hemisphere
blocking event. As can be seen in the plots,
the enstrophy advection demarcates the instabil-
ity and stability inherent in a blocking event as
predicted by the IRE. Thus, the enstrophy advec-
tion was found to be a useful diagnostic. In addi-
tion, an equation relating enstrophy advection to
ageostrophic vorticity advection and deformation
tendency was derived.
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