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1. INTRODUCTION 
 
Atmospheric temperature is an important input to 
numerical weather prediction (NWP) models 
used to provide medium range weather forecasts. 
Traditionally the temperature profiles used in 
NWP data assimilation have come from the 
global WMO network of radiosonde launch sites. 
The distribution of these sites is biased toward 
land areas and concentrated mainly in developed 
countries like the continental United States and 
Europe. Since the 1970’s, the use of satellites to 
provide temperature information on the 
atmosphere has taken on increasing importance. 
Microwave sounders in particular have been 
successfully integrated into operational weather 
forecast data assimilation system. The infrared 
sensors on the NOAA series of satellites, 
ATOVS, have also been assimilated with an 
emphasis on observed channels that peak high 
above the surface and clouds. More recently, 
radio occultation has been used to provide 
temperature profile information in the 
stratosphere and upper troposphere (Kursinski et 
al. 1997; Healy and Eyre 2000). High spectral 
resolution infrared sounders represent the latest 
contribution to atmospheric temperature 
sounding (Susskind et al. 2003, Smith and Weisz 
2012). The synergy of high vertical resolution 
temperature sounding from GPS RO and high 
vertical resolution moisture sounding from 
infrared spectra has also shown potential (Borbas 
et al. 2003). 
 
This paper presents a methodology for validating 
the measurements from the Cross-Track Infrared 
Microwave Sounding Suite (CrIMSS), which uses 
combined observations from the Advanced 
Technology Microwave Sounder (ATMS) and the 
hyperspectral infrared Cross-track Infrared 
Sounder (CrIS) on the Suomi NPP satellite, the 
first satellite of the newly created U.S. JPSS 
program (http://npp.gsfc.nasa.gov/science/scie-
ncedocuments/2013-01/474-00056_RevABase-
line.pdf). The atmospheric vertical temperature 
profiles (AVTPs) from the CrIMSS operational 
product are compared to temperature profiles 
obtained from radio occultation (RO) from the 
COSMIC GPS RO network (Rocken et al.; 2000). 
Mean bias, RMS, and standard deviation profile 
statistics are presented for global and 30 degree 
latitude zones for selected time periods in 2012. 

Similar validation statistics using AIRS and 
COSMIC profile matchups were created for the 
same space and time periods. The matchup 
methodology has been previously evaluated 
comparing a ray path method to the closest IR 
sounding (Feltz et al. 2012). In this paper, a 
comparison is made of the CrIMSS EDR 
performance relative to NASA AIRS L2 v5 
product using the COSMIC GPS RO network as 
a common reference. This evaluation is in 
support of the NOAA calibration/validation 
activities for the checkout of the CrIMSS EDRs.  
 
2. DATA 
 
COSMIC data was obtained from the COSMIC 
Data Analysis and Archival Center-CDAAC 
(http://cosmic-io.cosmic.ucar.edu/cdaac/products. 
html). The product used was the COSMIC real-
time version 2010.0001 named ‘atmPrf’, which 
contains dry temperature profile measurements. 
The vertical resolution varies between 0.1 and 1 
km depending on altitude. A typical COSMIC 
profile is obtained in about 100 seconds with over 
3,000 vertical samples. The netcdf files contain 
time in units of GPS seconds, which are about 15 
seconds ahead of UTC. The netcdf files also 
contain azimuth angle of the occultation plane at 
the tangent. The angle is measured between 
North and the GPS direction of the ray path. A 
quality control flag is included in the GPS RO 
netcdf files. For an example day, 19 October 
2007, the percentage of GPS profiles marked 
bad was 2.5%. These bad profiles are excluded 
from the analysis.  
 
The CrIMSS 42/22 layer EDR IDPS product used 
in the study was obtained from the NOAA CLASS 
system. The data for time periods prior to mid 
October (for the Oct. 1st to 10th analysis) was 
version Mx5.3 and (for the Oct 22nd to 31st 
analysis) was version Mx6.3. A CrIMSS 
aggregated file contains about 8 minutes of data.  
Quality control was applied using the overall 
retrieval quality flag—non-converged retrievals 
were not included in the analysis.  
 
AIRS data was provided by the Goddard Earth 
Sciences Data and Information Services Center 
(GESDISC) at http://disc.sci.gsfc.nasa.gov/AIRS-
/dataholdings/by-data-product/data_products.-
shtml. The Support Product used was Level 2 
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version 5 AIRX2SUP, which uses both AIRS IR 
and AMSU observations and provides 
temperature measurements at 101 levels.  Each 
AIRS granule contains about 6 minutes of data, 
45 scan lines of L2 soundings. The nominal size 
of an AIRS L2 retrieval field of view is 45 km (3x3 
L1B), while the vertical resolution varies between 
1 and 5 km depending on altitude. A latitude-
longitude bounding box for each AIRS granule 
was extracted from the XML files obtained from 
the Goddard data archive. Along with latitude, 
longitude, time, temperature, and pressure, the 
AIRS L2 data file contains a quality flag, PBest, 
which was used to exclude profile levels with 
pressures greater than PBest.   
 
3. METHODOLOGY 
 
The matchups used in this study have the GPS 
RO profile occurrence within one hour of the 
beginning time of the corresponding IR granule.  
The latitude and longitude of the perigee at the 
occultation point of the COSMIC profile must be 
collocated within the bounding box of the IR 
granule. Comparisons are made between the 
GPS RO temperature profile, the closest single 
IR profile, the average IR profile within a circle of 
diameter equal to the nominal GPS horizontal 
scale, and the average IR profile computed along 
the GPS RO ray path trajectory at each altitude 
level.  Figure 1 illustrates the three profile 
comparison methods with the circular and closest 
profiles calculated with reference to the GPS RO 
100mb latitude and longitude. Figure 2 depicts 
the three matchup methods and the ray path 
vector on horizontal maps of the 30mb, 100 mb, 
and 300mb levels.  
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Figure 1. Illustration of the closest (black 
squares), circular (blue circle), and ray path 
(red dots) averaged IR profiles on the 30mb, 
100mb, and 300mb levels overlaid on the GPS 
RO profile (green) and ray path (thin black 
lines) with a z-axis of pressure in mb.  

In order to determine the ray path averaged IR 
profile, calculations are done to create an 
average temperature value at each IR sounding 
pressure level. The GPS azimuth angle closest in 

pressure to the IR sounding level is selected and 
a horizontal ray vector is calculated. Then, the IR 
profiles within one-half the distance of the largest 
FOV diameter to the ray vector are averaged to 
obtain that level’s ray path averaged IR 
temperature value. One-half of the largest FOV 
diameter is approximately 50 km for AIRS and 70 
km for CrIMSS at slant view angles. 
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AIRS Pressure Level 44 −− 103.0172 mb
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AIRS Pressure Level 63 −− 300 mb
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Figure 2. Top to bottom, AIRS a) 32.3 mb 
(level 30), b) 103 mb (level 44) and c) 300 mb 
(level 63) temperatures differenced from the 
AIRS closest profile temperature (K) showing 
the pixels representing the closest profile 
(black square), circular averaged profile 
radius (within magenta circle), ray averaged 
profiles (red dots), and the COSMIC RO ray 
path (black line) on 19 October 2007 for 
granule 052 (around 05:12 UTC). 



To facilitate the GPS RO and IR profile 
comparison, both CrIMSS and COSMIC 
temperature profiles are computed at the AIRS 
101 levels using nearest neighbor linear 
interpolation. Statistical analysis is performed on 
global and zonal matchup sets to compute mean 
bias, RMS, and standard deviation for each AIRS 
pressure level. Figure 3 compares a single GPS 
RO profile with a coincident closest, circular 
averaged, and ray path averaged AIRS profile. 
Note the higher vertical structure apparent in the 
GPS profile. The deviation of AIRS and COSMIC 
for altitudes below 500 mb is due to 
contamination of the GPS RO dry temperature 
profile by water vapor (Kursinski et al. 1997, 
Anthes et al. 2008). 
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Figure 3. Comparison of a COSMIC RO 
temperature profile to the closest, circular 
averaged, and ray path averaged IR profiles; 
overlay (right) and as a difference profile (left) 
from 19 October 2007 at 03:50 UTC. 
 
4. RESULTS 
 
In order to assess a CrIMSS software version 
update in the JPSS operational production 
system (IDPS) on October 15, 2012, the CrIMSS 
minus COSMIC statistics were compared for the 
first and last ten days (October 1st to 10th and 
October 22nd to 31st respectively) of the month of 
October 2012. For comparison, the AIRS minus 
COSMIC statistics were also computed for the 
October 22-31 time period. 
 
Following Yunck et al. 2009, we compute the 
mean bias, RMS, and standard deviation of 
difference profiles for COSMIC GPS RO and IR 
matchups for Global, Arctic, Northern Mid-
Latitude, Tropical, Southern Mid-Latitude, and 
Antarctic zones. Figure 4 is an overlay of the 10-
day period global statistics for the two different 
product versions.  Note that the magnitude of the 
global bias is significantly improved in the 
updated version. 
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Figure 4. Global bias and standard deviation 
of CrIMSS minus COSMIC statistics for the 
ten day period Oct 1-10 (Mx5.3) compared to a 
ten day period Oct 22-31 (Mx6.3) following the 
IDPS version update on 15 October 2012. 
 
A more detailed assessment of the version 
update change is shown in Figure 5 where zonal 
statistics for CrIMSS relative to the COSMIC 
network are compared to AIRS retrievals for the 
same time period. 
 
The CrIMSS version update, illustrated in the 
change from version 5.3 to 6.3, included an 
update to the ATMS cross-track scan bias based 
on empirical evaluation against ECMWF analysis 
fields. One of the important aspects of evaluation 
of CrIMSS products against the COSMIC GPS 
network is that the COSMIC dry temperature is 
independent of NWP model analysis. The 
traceability of the COSMIC GPS RO to the SI 
time standard also provides independence from 
the temperature standard used in CrIS 
calibration.  
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Figure 5. CrIMSS–COSMIC 
Oct 1st –10th 2012 
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CrIMSS–COSMIC Oct 22nd–
31st 2012 
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5. CONCLUSIONS 
 
A methodology has been developed for validation 
of CrIMSS AVTP in the upper troposphere and 
lower stratosphere using GPS radio occultation.  
In this methodology, matchups between the GPS 
RO COSMIC network dry temperature profiles 
and CrIMSS granules within a one hour time 
difference are found.  By using a ray path 
method, the GPS RO horizontal resolution of 300 
km is accounted for as a function of height. 
 
This methodology is shown to be useful for 
validating CrIMSS products, even during the beta 
product period, and has been used to evaluate a 
CrIMSS software version update that occurred on 
15 October 2012. The same methodology has 
been applied to AIRS v5 retrievals to provide a 
relative comparison.  
 
Future work includes the application of the 
temperature averaging kernel to the COSMIC 
minus IR profile differences to remove vertical 
structure higher than the theoretical IR resolution. 
Application of this method to CrIMSS EDR 
product validation will continue during the 
validation phase. 
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