
Schedule WRF model executions in parallel computing environments using Python

A.M. Guerrero-Higueras, E. Garćıa-Ortega and J.L. Sánchez
Atmospheric Physics Group, University of León, León, Spain

J. Lorenzana
Foundation of Supercomputing Center of Castile and León, León, Spain

V. Matellán
Dpt. Mechanical, IT, and Aerospace Engineering, University of León, León, Spain

ABSTRACT

The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical
weather prediction system designed to serve both operational forecasting and atmospheric research
needs. WRF is suitable for a broad spectrum of applications across scales ranging from meters to
thousands of kilometers. Preparing an operational forecast that uses available resources efficiently
for its execution requires certain programming knowledge in parallel computing environments. This
work shows how to construct a tool that allows for scheduling operational executions of the WRF
model. This tool will allow users without advanced programming knowledge to perform their own
periodic planning operative executions of WRF model.

1. Introduction

The Weather Research and Forecasting model (WRF),
Skamarock et al. (2005), is an non-hydrostatic atmospheric
simulation model for a limited area, sensitive to the charac-
teristics of the terrain, and designed to forecast atmospheric
circulation on synoptic, mesoscale, and regional scales. It
was developed in collaboration with the National Oceanic
and Atmospheric Administration (NOAA), the National
Centers for Atmospheric Research (NCAR), and other or-
ganizations.

The implementation of the model is prepared to work
in parallel computing environments with shared memory,
using OpenMP, and with distributed memory, using MPI.
Additionally, the model has the capacity to combine both
technologies.

The WRF model is composed of a series of modules,
UCAR (2012). Each module corresponds to a different
function: GEOGRID allows for the configuration of the
geographic area of study. UNGRIB prepares the data for
the initialization of the model, which is normally esta-
blished by the output of another model with greater spatial
coverage. METGRID prepares the boundary conditions,
adapting itself to the characteristics of the domains de-
fined in GEOGRID. REAL does a vertical interpolation
from the pressure levels to a system of normalized Sigma
coordinates. The WRF module solves the physical fore-
casting and diagnostic equations that allow for a forecast

with a predetermined temporal horizon.
The WRF model is designed so that each module must

be executed independently. This provides many advan-
tages, especially if it is only used for atmospheric research.
However, if the objective is to plan its execution in order to
get operational forecasts, it can be inconvenient. The At-
mospheric Physics Group (GFA) at the University of León
(ULE), uses the model for operational forecasting.

It is important to point out that there are no tools
that allow for scheduling executions. This makes centers
that want the model for operational use define their own
solutions ad hoc. In order to do so, it might be necessary
to have at least some basic knowledge of programming,
especially if the objective is to make use of its capacity to
run parallel computations.

The GFA has implemented a tool, known as PyWRF-
scheduler1, using Python, which resolves this problem and
that can be configured by any researcher without previous
programming knowledge. This tool guarantees the opti-
mization of resources in a parallel computing environment.
This can be very important, since the access to this type
of environment is usually limited, and often, it can incur
high economic costs.

Normally, access to these environments is controlled by
a job scheduler, who is usually in charge of sending jobs

1Copyright 2013 Atmospheric Physics Group, University of León,
Spain. PyWRFscheduler is distributed under the terms of the GNU
Lesser General Public License.

1

Usuario
Texto escrito a máquina
1.2

and reserving the necessary nodes to run them in a parallel
computing cluster. The GFA carries out its forecasts in
a cluster from the Foundation of Supercomputing Center
of Castile and León (FCSCL), using up to 360 nodes in
some cases. The FCSCL uses Sun Grid Engine (SGE),
Sun Microsystems (2002), to manage sending their jobs to
Caléndula, its parallel computing cluster.

The most common way—which is also the least effi-
cient—of executing the model in a parallel computing en-
vironment is to send only one job to the job scheduling.
This does not guarantee a complete optimization of re-
sources, since not all of the modules of the WRF model
are prepared to be executed in a parallel computing envi-
ronment. Usually, only the REAL and WRF models are
done this way, since executing both of these modules im-
plies the largest part of overall time that the model is run.
As such, it is necessary to point out that during the exe-
cution of other modules, only one of the reserved nodes is
used. This means that during a period of time, some nodes
in the cluster are reserved but unoccupied. This period of
time can be relatively large, especially if post-processing of
the output is carried out.

The tool developed by the GFA optimizes the use of
parallel resources. Thus, instead of sending one job to the
job scheduler, a job for each module is sent, plus an ex-
tra job for the post-processing of output. In this way, it
is possible to indicate that the job scheduler should only
reserve the exact number of nodes needed in order to carry
out each job, which presents important advantages, as pre-
viously shown.

2. Prior Work

As seen previously, the WRF model is composed of va-
rious modules that have to be executed sequentially in or-
der to obtain a weather forecast. Each module has different
computation needs. GEOGRID, UNGRIB, and METGRID
are habitually executed in one node, while REAL and WRF
are normally executed in various parallel nodes.

Writing a shell script that makes it possible to execute
each module sequentially, and later send it to a parallel cal-
culation environment as one job, is simple. wrf.sh script,
which is available on line at GFA website2, shows an exam-
ple ready to be sent to the SGE job scheduler of the para-
llel calculation cluster of the FCSCL. In this example, 360
nodes are reserved to execute the job, however, the exe-
cution of the WRF model alone makes use of all of the
nodes. During execution of the rest of the modules, there
are nodes that do not perform any calculations.

In Table 1, we can see the execution time of each mod-
ule. During the execution of GEOGRID, UNGRIB, MET-
GRID, and, on a lesser scale, during the execution of REAL
module, there are nodes that are not in use. We have to

2http://gfa.unileon.es/data/toolbox/PyWRFscheduler/wrf.sh

Table 1. Execution time of different modules of the WRF
model in 360 nodes.

Running Reserved Used Unused
Module time nodes nodes nodes

UNGRIB 13m12s 360 1 359
METGRID 10m48s 360 1 359

REAL 1m20s 360 32 328
WRF 1h27m11s 360 360 0

add this accumulated time to the time of each download
of entry data not included in the table, and the time of
post-processing of the output if and when it is carried out.

This work method implies a waste of available resources,
which makes the GFA consider a more efficient solution.

3. Software Architecture

In order to solve the problem presented in the previous
section, the GFA has designed a tool, called PyWRFsche-
duler, which sends different jobs to a SGE job scheduler in
sequence, following a work-flow of previously defined tasks.

The first step consists of discomposing the execution of
the model in independent tasks. Each task is implemented
in an independent Python script, all of them are available
on line at GFA website:

• preprocess.py3: This script processes tasks before
the model execution.

• geogrid.py4: Responsible for executing the GEO-
GRID module of the WRF model.

• ungrib.py5: Responsible for executing the UNGRIB
module.

• metgrid.py6: Responsible for executing the MET-
GRID module.

• real.py7: Responsible for executing the REAL mo-
dule.

• wrf.py8: Responsible for executing the WRF mo-
dule.

The output that the WRF model produces is in netCDF
format, Unidata (2012). Habitually, graphic representa-
tions are generated using output in order to visualize re-
sults. These graphics can be generated by using an addi-
tional script that can be included in the tasks work-flow.

3http://gfa.unileon.es/data/toolbox/PyWRFscheduler/preprocess.py
4http://gfa.unileon.es/data/toolbox/PyWRFscheduler/geogrid.py
5http://gfa.unileon.es/data/toolbox/PyWRFscheduler/ungrib.py
6http://gfa.unileon.es/data/toolbox/PyWRFscheduler/metgrid.py
7http://gfa.unileon.es/data/toolbox/PyWRFscheduler/real.py
8http://gfa.unileon.es/data/toolbox/PyWRFscheduler/wrf.py

2

The implementation of these types of scripts can be sequen-
tial, since they do not require much additional computa-
tional work. However, if the number of graphics is very
high, the execution time increases, and it is interesting to
think about a parallel solution in these cases, Guerrero-
Higueras et al. (2012).

In addition to the previous scripts, an additional script
is necessary. This process will be responsible for sending
the tasks to the job scheduler in the proper order. It should
be executed in a node from which jobs can be sent to a
parallel environment. This process is implemented with
another Python script: wfmanager.py9.

Figure 1 shows a diagram with the interaction of each
of the scripts with the job scheduler and with a log file that
the job scheduler generates.

wf.xml

wrf.log

wfmanager.py

preprocess.py

ungrib.py

metgrid.py

real.py

wrf.py

postproc.py

Jo
b
 s

ch
e
d
u
le

r
(S

G
E

)

 HPC Environment Access node

Fig. 1. Software Architecture.

The following sections explain the function of each script.

a. wfmanager.py script

This script is responsible for coordinating the entire
sequential sending process of tasks. In order to monitor
the beginning and end of each task, wfmanager.py uses the
log file that the SGE job scheduler generates with the result
of the execution of each job.

The first step consists of defining a work-flow that in-
cludes all of the tasks. In order to define this work-flow,

9http://gfa.unileon.es/data/toolbox/PyWRFscheduler/wfmanager.py

a file in XML format is used, W3C (1996). This XML file
follows a few rules and contains a series of entities:

• A work-flow entity with the definition of the same
work-flow.

• N elements with the entity task, one for each of the
tasks that compose the work-flow.

Figure 2 represents the hierarchical structure of the en-
tities that form the work-flow. In the following sections, all
of the entities that define the work-flow are detailed, along
with the different attributes that they support.

Workflow

Task Task Task

ID PARAMLIST

PARAM PARAM

SCRIPT

............

........

Fig. 2. Work-flow hierarchical structure.

1) work-flow entity

The work-flow entity should contain only one series of
task entities that define each task. work-flow supports
two attributes. The date attribute contains the date and
forecast start-time, and the forecast attribute that indi-
cates the number of forecast hours from the start time.

2) task entity

The task entity contains the definition of the task. A
sequence of elements in this entity defines the work-flow

entity. Each task entity should contain an element for each
one of the following entities:

• id entity: Assigns a name for a task. It supports the
following attributes:

– continueTag: This will be the value that the
work-flow manager looks for, the wfmanager.py

3

script, in the log file created by the SGE job
scheduler, in order to make sure that the task
is executed correctly and that it is possible to
continue with the the next one.

– abortTag: This will be the value that the work-
flow manager looks for, wfmanager.py, in the
log file created by the SGE job scheduler, in
order to make sure that if an error has occurred
when performing the task, and it is not possible
to continue with the next one.

• script entity: This indicates the script path that the
task executes. It supports the following attributes:

– nodes: Specifies the number of nodes in the pa-
rallel calculation environment where the task is
executed.

– queue: Specifies the execution queue in the pa-
rallel calculation environment where the task is
executed.

• paramlist entity: Contains the list of parameters
that each script needs to carry out a task. Each script
contains a different number of parameters. A param

entity is defined for each parameter. Each param ele-
ment has a value for each parameter. param supports
the name attribute that is assigned to each parameter.

wf.xml file shows, available on line at GFA website10

under the terms of the GNU General Public License, the
definition of a work-flow.

Once the work-flow file is defined in the XML file, a
wfmanager.py script is executed. wfmanager.py covers the
XML file using a parsing process, implemented using the
API DOM (Document Object Model API) from Python,
Python Software Foundation (1990). For each task entity
that appears in the work-flow, wfmanager.py sends a job
to the SGE job scheduler. In order to send jobs to the
SGE job scheduler, wfmanager.py uses the qsub command,
along with a series of arguments and the script path:

• Working directory (-wd): base directory where the
script works.

• Parallel environment (-pe): number of nodes needed
to be reserved to execute each job.

• Name (-N): identifier of job.

• Output (-o): file path that is required to redirect the
standard output.

• (-j): Specifies whether or not the standard error
stream of the job is merged into the standard out-
put stream.

10http://gfa.unileon.es/data/toolbox/PyWRFscheduler/wf.xml

• Shell (-S): Shell where the script is executed.

• Queue (-q): queue where the job is sent.

wfmanager.py uses values for the attributes and enti-
ties contained in the task entity in order to select the script
and assign values to the qsub arguments.

b. preprocess.py script

This script does tasks before the execution of the model:

• It is responsible for downloading information in order
to initiate the WRF model. In the GFA executions,
the WRF model initiates with the information from
the Global Forecasting11 (GFS) model.

• It updates data in the model’s configuration files.
Specifically, it modifies the date and time of the fore-
cast in the namelist.wps and namelist.input files,
as shown in Figures 3 and 4.

&share

start_date = ’2013-01-22_00:00:00’,

’2013-01-22_00:00:00’,

’2013-01-22_00:00:00’,

end_date = ’2013-01-26_00:00:00’,

’2013-01-24_00:00:00’,

’2013-01-24_00:00:00’,

...

Fig. 3. Time control section in namelist.wps file.

If both tasks are executed correctly, preprocess.py

writes the continueTag defined for the task in the log
file, otherwise, preprocess.py writes the abortTag.

c. ungrib.py script

This script is responsible for the execution of the UN-
GRIB module. First, it should connect information that
allows for the initialization of the model so that UNGRIB
can use it. The same WRF model provides a script with
a shell that performs this function: link grib.csh. It is
only necessary to indicate the path and the pattern for the
files that contain the information needed to initialize the
model. After connecting the entry data, one only has to
execute the ungrib.exe program included in the model’s
software.

If ungrib.exe is executed correctly, ungrib.py writes
the continueTag defined for the task in the log file, other-
wise, ungrib.py writes the abortTag.

11Carried out by the National Oceanic and Atmospheric Adminis-
tration (NOAA).

4

&time_control

start_year = 2013,2013,2013,

start_month = 01,01,01,

start_day = 22,22,22,

start_hour = 00,00,00,

start_minute = 00,00,00,

start_second = 00,00,00,

end_year = 2013,2013,2013,

end_month = 01,01,01,

end_day = 26,24,24,

end_hour = 00,00,00,

end_minute = 00,00,00,

end_second = 00,00,00,

...

Fig. 4. Time control section in namelist.input file.

d. metgrid.py script

The metgrid.py script is responsible for the execution
of the METGRID module. It uses the information obtained
from the UNGRIB module, and, as such, has to be executed
afterwards. One only has to execute the metgrid.exe pro-
gram.

If metgrid.exe is executed correctly, metgrid.py writes
the continueTag defined for the task in the log file, other-
wise, metgrid.py writes the abortTag.

e. real.py script

This script is responsible for the execution of the REAL
module of the WRF model. It uses information obtained
from the METGRID module, and, as such, has to be exe-
cuted afterwards. One only has to execute the real.exe

program using mpirun, indicating the number of nodes.
If real.exe is executed correctly, real.py writes the

continueTag defined for the task in the log file, otherwise,
real.py writes the abortTag.

f. wrf.py script

The wrf.py script is responsible for the execution of the
WRF module. It uses information obtained from REAL
module, and, as such, has to be executed afterwards. One
only has to execute the wrf.exe program, using the mpirun,
indicating the number of nodes.

If wrf.exe is executed correctly, wrf.py writes the con-
tinueTag defined for the task in the log file, otherwise,
wrf.py writes the abortTag.

4. Development Process

The PyWRFscheduler tool, Copyright 2013 Atmospheric
Physics Group, was developed using Python. All of the

scripts were tested in the FCSCL cluster. They are availa-
ble to the scientific community, under the terms of the
GNU Lesser General Public License1213 (LGPL). They are
available on line at the GFA website14.

5. Application: GFA’s operational forecasts

Operational forecasts are available on line at GFA web-
site. Two types of forecasts are calculated, over three
added domains with different spatial resolutions, 27, 9, and
3 km, respectively, that include different geographical areas
in the southeast of Europe, as seen in Figures 5 and 6.

Fig. 5. Domains 1, 2, and 3 for Type-I forecasts.

Fig. 6. Domains 1, 2, and 3 for Type-II forecasts.

• Type-I Forecasts: Calculated twice per day, begin-
ning at 0:00 UTC and at 12:00 UTC, with a temporal
horizon of 96 hours for the first domain and 48 for
the other domains.

• Type-II Forecasts: Calculated twice per day, begin-
ning at 6:00 UTC and at 18:00 UTC, with a temporal
horizon of 48 hours.

Tables 2 and 3 show the average time of execution and
the nodes used for the different modules of the WRF model,
in Type-I and Type-II forecasts , respectively, sending only
one job to the SGE job scheduler.

Tables 4 and 5 show the average time of execution of the
nodes used for the different modules of the WRF model for
Type-I and Type-II forecasts using the PyWRFscheduler
tool, respectively.

12http://www.gnu.org/licenses/gpl.txt
13http://www.gnu.org/licenses/lgpl.txt
14http://gfa.unileon.es/?q=toolbox

5

Table 2. Execution of Type-I forecasts, sending only one
job to the SGE job scheduler.

Running Reserved Used Unused
Module time nodes nodes nodes

UNGRIB 7m22s 128 1 127
METGRID 2m10s 128 1 127

REAL 2m3s 128 16 112
WRF 45m35s 128 128 0

Table 3. Execution of Type-II forecasts, sending only one
job to the SGE job scheduler.

Running Reserved Used Unused
Module time nodes nodes nodes

UNGRIB 8m58s 288 1 287
METGRID 7m44s 288 1 287

REAL 1m45s 288 32 256
WRF 1h38m15s 288 288 0

6. Conclusion

By executing the WRF model, and sending only one
job to the computing environment, time intervals were ob-
served in which there were unused nodes, as seen in Tables
2 and 3. By using the PyWRFscheduler, which sends jobs
to the computing environment for each module, this did
not occur, since only nodes that were necessary were re-
served for each case.

After doing tests, it is important to point out that
the use of the PyWRFscheduler tool to execute the WRF
model, guarantees optimal use of the resources in a para-
llel computing environment. Thus, its use suggests only a
small upcharge in the total time of execution.

Acknowledgments.

The authors would like to thank the Junta of Castile
and León for their economic support via the LE176A11-2

Table 4. Execution of Type-I forecasts using PyWRF-
scheduler.

Running Reserved Used Unused
Module time nodes nodes nodes

UNGRIB 7m36s 1 1 0
METGRID 2m19s 1 1 0

REAL 2m33s 16 16 0
WRF 46m05s 128 128 0

Table 5. Execution of Type-II forecasts using PyWRF-
scheduler.

Running Reserved Used Unused
Module time nodes nodes nodes

UNGRIB 8m59s 1 1 0
METGRID 8m14s 1 1 0

REAL 1m53s 32 32 0
WRF 1h38m32s 288 288 0

project. This study was supported by the following grants:
CGL2010-15930; MICROMETEO (IPT-310000-2010-22).

REFERENCES

Guerrero-Higueras, A., E. Garćıa-Ortega, V. Matellán-
Olivera, and J. Sánchez, 2012: Procesamiento paralelo
de los pronósticos meteorológicos del modelo WRF me-
diante NCL. Actas de las XXIII Jornadas de Paralelismo
JP2012, ISBN: 978-84-695-4471-6., 55–60.

Python Software Foundation, 1990: The document ob-
ject model API. http://docs.python.org/2/library/
xml.dom.html.

Skamarock, W., J. Klemp, J. Dudhia, D. Gill, D. Barker,
W. Wang, and J. Powers, 2005: A description of the
advanced research wrf version 2. NCAR Tech. Note
NCAR/TN-468+STR.

Sun Microsystems, 2002: SunTM ONE Grid Engine Ad-
ministration and User’s Guide.

UCAR, 2012: User’s guide for the advanced research
WRF (ARW) modeling system. http://www.mmm.ucar.
edu/wrf/users/docs/user guide V3/contents.html.

Unidata, 2012: NetCDF users guide. https://www.unidat
a.ucar.edu/software/netcdf/docs/user guide.html.

W3C, 1996: Extensible markup language (xml). http://
www.w3.org/XML/.

6

