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1. INTRODUCTION 
 

For its obvious importance, quantitative 
precipitation estimation (QPE) has been a topic of active 
research for over a century (Thiessen 1911). Whether it 
is based on gauge-only or multisensor estimation, QPE 
generally involves spatial prediction using statistical or 
dynamical-statistical models. Statistical models, by far 
the more widely used of the two to date, use optimal (in 
some sense of the word) estimation, of which various 
types of linear and nonlinear techniques are available 
(see e.g. Creutin and Obled (1982), Tabios and Salas 
(1985) and references therein). For example, the 
algorithms used operationally in the National Weather 
Service (NWS) for gauge-only and radar-gauge 
analyses in their Multisensor Precipitation Estimator 
(MPE, Seo et al. 2010) are variants of kriging and 
cokriging, respectively (Seo 1998a,b). 

Real-time QPE demands accurate estimation 
particularly of large amounts as they represent greater 
hazards to lives and properties. In flood forecasting, 
what matters most for QPE is the ability to estimate 
large amounts of precipitation as accurately as possible 
over the range of spatiotemporal scales of aggregation 
associated with the size and response time of the basin. 
Kriging or its variants do produce, as theoretically 
expected, precipitation estimates that are unbiased and 
of minimum error variance in the unconditional sense. In 
the conditional sense, however, these so-called optimal 
estimation techniques very often severely underestimate 
heavy precipitation and overestimate light precipitation 
(Seo and Breidenbach 2002, Ciach et al. 2000, Habib et 
al. 2012). These results arise because, to achieve (un-
conditional) minimum error variance, it is necessary to 
reduce the error variance associated with light to 
moderate precipitation, which occurs frequently and 
over large areas, even if it may increase the error 
variance associated with heavy precipitation, which 
occurs relatively rarely and generally over small areas. 
For accurate estimation of large amounts, however, it is 
more important to reduce conditional bias (CB), in 
particular Type-II CB, than to minimize unconditional 
error variance. QPE for flood forecasting is a prime 
example of that. In the above, Type-II CB is defined as 

xxXXE −= ]|ˆ[ where X , X̂  and x denote the 

unknown truth, the estimate, and the realization of X , 
respectively (Joliffe and Stephenson 2003). 
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The proposed methodology is based on novel 
extension of classical optimal linear estimation theory in 
which, in addition to error variance, Type-II conditional 
bias (CB) is explicitly minimized. The resulting Fisher-
like solution may also serve as an alternative or 
complementary observation equation for a range of 
Fisher solution-based static or dynamic filters, such as 
Kalman filter and its variants. When cast in the form of 
well-known kriging or its variants used in the NWS MPE, 
the proposed methodology yields a new kriging 
estimator, referred to herein as CB-penalized kriging 
(CBPK) (Seo 2012).  

CBPK, however, gives negative estimates in areas 
of light precipitation. To address this, an extension of 
CBPK, referred to herein as Extended Conditional Bias 
Penalized Kriging (ECBPK), has been developed.  
Loosely speaking, ECBPK truncates negative values to 
zeros and introduces a scalar weight as a function of 
probability of precipitation (PoP) through which the total 
amount of precipitation is preserved. In this study, 
comparative evaluation of ECBPK is carried out with 
ordinary kriging (OK) (Journel and Huijbregts 1978), a 
variant of which is used in MPE for gauge-only 
estimation, for estimation of point and mean areal 
precipitation (MAP) through real-world and synthetic 
experiments, respectively. 

 
2. METHODOLOGY 
 

In this section, CBPK is briefly described and 
ECBPK is introduced as an extension of CBPK.  

 
2.1 CONDITIONAL BIAS PENALIZED KRIGING 
(CBPK) 

 
CBPK minimizes the sum of the error variance and 

the mean squared CB of the estimate: 
 
𝐽 = 𝐸𝑧0∗,𝑧0[(𝑍0∗ − 𝑍0)2] + 𝐸𝑧0  ��𝐸𝑍0∗ [𝑍0∗|𝑍0] − 𝑍0�
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            =   𝐸𝑧𝑖,𝑧0{∑ 𝜆𝑖( 𝑍𝑖 −𝑛
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    +∫{𝐸𝑧𝑖[∑ 𝜆𝑖(𝑍𝑖 − 𝑚𝑖)|𝑍0 = 𝑧0]𝑛
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                  x𝑓𝑧0(𝑧0)𝑑𝑧0                                                     (1)  
 
Where Z0* denotes the simple kriging estimate of the 
random variable of interest at location u0, Z0, m0 
denotes the mean of Z0, λi denotes the weight given to 
the observation at ui of the random variable Zi, mi 
denotes the mean of Zi, z0 denotes the realization of Z0, 
n denotes the number of neighbors, )( 00

zfZ  denotes the 

marginal probability density function (pdf) of Z0  and the 
expectation operations are with respect to the variables 



subscripted. The weights, njj ,...,1, =λ , may be 

obtained by solving the following CBPK system: 
 

�𝜆𝑖�𝜌𝑖𝑗 + 𝜌𝑖0𝜌𝑗0�𝜎𝑖𝜎𝑗 = 2𝜌𝑖0𝜎𝑖𝜎0,   
𝑛

𝑗=1

 

𝑖 = 1, … ,𝑛                                                                   (2) 
 
where ijρ  denotes the correlation between iZ  and jZ , 

and iσ  denotes the standard deviation of iZ . For 
further details, the reader is referred to Seo (2012). 
 
2.2 EXTENDED CONDITIONAL BIAS-PENALIZED 
KRIGING (ECBPK) 
 

While CBPK is superior to OK over the tail ends of 
the distribution, it is slightly inferior to OK over the mid-
ranges. Also, if the distribution is skewed and the 
variable of interest is nonnegative, a significant fraction 
of the CBPK estimates may be significantly negative. A 
methodology is therefore needed to combine the OK 
and CBPK estimates so that the resulting estimate is 
close to the more accurate of the two, depending on the 
magnitude of the precipitation amount being estimated, 
and that the precipitation estimates are nonnegative. 
For that, we write the estimate, ],...,|[ 110 nn zZzZZE == , 
as follows: 
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where { • } denotes the event { nn zZzZ == ,...,11 } 
for brevity, Ak’s denote the sub-ranges of the truth, the 
union of which encompasses the entire range of the 
truth, and Pr[ ] denotes the probability of occurrence of 
the event bracketed. We rewrite the conditional 
expectation in Eq.(3) as: 
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where OK* or CBPK* denotes the event that the OK or 
CBPK estimate is more accurate than the CBPK or OK 
estimate, respectively. It can be shown that, under 
simplifying assumptions, the ECBPK estimate may be 
written as: 
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In actual implementation of ECBPK in this work, γ has 
been parameterized as a function of PoP. The larger or 
the smaller PoP is, the closer to unity or zero γ is, 
respectively. That is, the more likely precipitation is to 
occur, the larger the weight given to the CBPK estimate 
is. 
 
3. EVALUATION 
 

Comparative evaluation of ECBPK is carried out 
through real world and synthetic experiments. The 
evaluation experiments are described in this section. 
 
3.1 REAL WORLD EXPERIMENTS 
 

To comparatively evaluate ECBPK, several real 
world experiments were carried out in a cross validation 
mode using hourly and daily rain gauge data for a 
collection of heavy-to-extreme precipitation events in the 
U.S. They include events over the Arkansas-Red Basin 
River Forecast Center (ABRFC) service area in 
Oklahoma, the 2009 Southeast extreme event, and 
tropical storm events over the Lower Colorado River 
Authority (LCRA) service area in Texas. The number of 
nearest neighbors used is 30 throughout this work. For 
each event evaluated in this paper, the spatial 
correlation scale was calculated using the Stage IV 
data. For that, conditional (on occurrence of 
precipitation) correlograms were calculated in eight 
different directions (0⁰, 26.6⁰, 45⁰, 63.4⁰, 90⁰, 116.6⁰, 
135⁰, 153.4⁰) which are then fitted to the exponential, 
Gaussian and spherical models (Journel and Huijbregts 
1978). It was found that the exponential model provides 
the best fit and the correlation structure is largely 
isotropic (see Figure 1). As such, an average of all 
directional correlation parameters was used for both 
hourly and daily analysis. 

 
3.2 SYNTHETIC EXPERIMENTS 
 

For mean areal precipitation (MAP) analysis, the 
Stage IV data for the 2009 Southeast extreme event 
were used as truth. The synthetic rain gauge networks 
were then generated by randomly selecting grid boxes 
from the 150x150 HRAP domain. The gauge networks 
consist of 125, 500, 1000, 2000 and 4000 gauges. The 
gauge observations (i.e. the Stage IV estimates at the 
randomly selected gauge locations) were interpolated 
for all HRAP grid points using OK and ECBPK. The 
MAP estimates were then calculated for the square 
areas ranging from 4x4 km2 to 128x128 km2. 
 
 
 
 
 



4. RESULTS 
 
 In this section, cross validation results from hourly 
and daily point precipitation analysis and MAP analysis 
results from the synthetic experiment are presented. 
 

   

 

Figure 1: Directional correlograms (cross) and the 
exponential model fit (solid red) for hourly gauge analysis 
for the 2009 Southeast extreme precipitation event. 

 
4.1. POINT PRECIPITATION ANALYSIS 
 
 For estimation of point precipitation, the OK and 
ECBPK estimates are compared using scatter plots and 
summary statistics. Figure 2 shows the scatter plots of 
estimated vs. observed hourly point precipitation over 
the ABRFC service area in Oklahoma. Note that ECBPK 
reduces conditional bias significantly. 
 Figure 3 shows the reduction in RMSE by ECBPK 
over OK for hourly and daily analyses of the 2009 
Southeast extreme precipitation event and for Tropical 
Storm Erin in TX, respectively. In this figure, the 
reference is the OK estimates and the margin of 
improvement by ECBPK over OK is shown in terms of 
percent reduction in RMSE. In this work, in an attempt 
to quality-control the gauge data at least partially, we 
used the coefficent of variations (CV) and PoP of gauge 
data from individual gauges to identify bad gauges, 
which were then thrown out. Visual examination of the 
scatter plots indicates, however, that a large number of 
bad gauge reports still exist. It is suspected that the 
margin of improvement by ECBPK, particularly for 
hourly analysis, is significantly compromised by the bad 
gauge data. 
 Figures 4 shows the precipitation accumulation 
maps for the 2009 Southeast extreme precipitation 
event as estimated by OK and ECBPK via hourly 
analysis. For comparison, the corresponding Stage IV 
analysis is also shown. Note that ECBPK picks up very 
large and small precipitation amounts better than OK, 
and that ECBPK depicts the spatial pattern of 
precipitation better than OK.

      .

 
Figure 2: Scatter plots of observed vs. estimated hourly precipitation over the ABRFC service area in Oklahoma. 
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(b) 

Figure 3. Percent reduction in RMSE by ECBPK over OK 
for a) hourly precipitation for the 2009 Southeast extreme 
precipitation event and b) for daily precipitation in Texas. 

 
4.2. MAP ANALYSIS 

 
For MAP, hourly analysis is carried out for thirty 

different combinations of gauge network density and 
basin scale. The gauge network density ranged from 
125 to 4,000 gauges in an area of 600 x 600 km2 and 
the basin size ranged from 16 km2 to 16,384 km2. The 
densities of 500 and 1,000 gauges are comparable to 
the operational HADS and COOP gauge networks, 
respectively (Kim et al. 2010). For MAP, the margin of 
improvement in RMSE reduction by ECBPK increases 
with increasing basin scale up to 256 km2 and 
increasing gauge network density. Beyond 256 km2, the 
improvement starts to decrease. For larger basin sizes, 
the reduction is negative in the mean sense because 
the area of small-to-moderate precipitation increases as 
the basin size increases. For very large precipitation 

amounts, however, ECBPK produces more accurate 
estimates than OK even for large basins (see Figure 5). 
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Figure 4. Precipitation accumulation maps for a) OK 
analysis b) ECBPK analysis c) Stage IV data for the 2009 
Southeast extreme event. 



 

 
Figure 5: Scatter plots for hourly mean areal precipitation of 4096 sq. km basin for gauge densities 500 (top) and 1000 
(bottom) gauges 

 
 

5. CONCLUSIONS AND FUTURE RESEARCH  
RECOMMENDATIONS 

 
For accurate estimation of heavy-to-extreme 

precipitation, reducing Type-II CB is important. In this 
paper, we describe and evaluate a new precipitation 
analysis technique, ECBPK, which significantly reduces 
Type-II CB. Compared to OK, a variant of which is used 
in MPE in NWS, ECBPK improves performance for 
estimation of large amounts of daily and hourly 
precipitation. For daily analysis, the margin of 
improvement is very significant (over 10% reduction in 
RMSE). For hourly analysis, the margin is smaller due 
possibly to lack of quality control of the rain gauge data 
used. For MAP analysis, ECBPK improves performance 
for smaller basins (64 km2 to 512 km2). While the 
improvement for larger basins is smaller in the mean 
sense, ECBPK significantly improves estimation for very 
large precipitation amounts. 

 
For future research, we plan to pursue multivariate 

extension of ECBPK and CB-penalized linear filter. In 
the context of multisensor QPE, ECBPK is expected to 
provide improvement when the auxiliary variable(s) are 
not very skillful. Such application is hence particularly 
applicable when merging rain gauge data with satellite 
QPE, NWP analysis and/or cool-season radar QPE. In 
the context of linear filtering, one may expect the CB-
penalized approach to improve filter performance when 
the observations and/or the dynamical model used is 
susceptible to CB. 
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