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1. 1INTRODUCTION 

The 30th Operational Support Squadron Weather 
Flight (30 OSSWF) provides comprehensive weather 
services to the space program at Vandenberg Air Force 
Base (VAFB) in California. One of their responsibilities 
is to monitor upper-level winds to ensure safe launch 
operations of the Minuteman III ballistic missile. The 30 
OSSWF requested the Applied Meteorology Unit (AMU) 
analyze VAFB sounding data to determine the 
probability of violating (PoV) upper-level thresholds for 
wind speed and shear constraints specific to this launch 
vehicle, and to develop a graphical user interface (GUI) 
that will calculate the PoV of each constraint on the day 
of launch. The AMU suggested also including forecast 
sounding data from the Rapid Refresh (RAP) model. 
This would provide further insight for the launch weather 
officers (LWOs) when determining if a wind constraint 
violation will occur over the next few hours, and help to 
improve the overall upper winds forecast on launch day.  

2. HISTORICAL DATA 

The primary goal of this work was to build a GUI 
that will aid the LWOs in determining if a wind constraint 
violation will occur when launching Minuteman III 
ballistic missiles. The AMU collected, processed, and 
analyzed VAFB sounding data to determine the PoV of 
their specific wind speed and shear constraints. This 
included interpolating data to heights required for 
operations and determining how the data were 
distributed. 

2.1 Collection 

In order to analyze the upper-level thresholds for 
wind speed and shear and calculate their PoV, the AMU 
collected historical sounding data from VAFB. The ideal 
data for this task would have been the soundings 
collected through the Automated Meteorological 
Profiling System (AMPS) at VAFB. Unfortunately, due to 
limitations of the VAFB AMPS system, these data were 
not provided to the AMU. 

To circumvent this issue, the 45th Weather 
Squadron (45 WS) suggested using the Range 
Reference Atmosphere (RRA) data for VAFB. The RRA 
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contains the monthly means and standard deviations of 
the sounding variables every 0.25 km (~820 ft) using 
soundings collected in the years 1990-2001 
(https://bsx.edwards.af.mil/weather/rcc.htm). Assuming 
the variable values were normally distributed, the means 
and standard deviations were used in an Excel formula 
to calculate the probabilities of exceeding the desired 
thresholds. The probabilities never exceeded 1%, and 
were more often much closer to 0%. The AMU 
determined this would not be useful information for the 
30 OSSWF. 

The AMU team met and decided that useful results 
would more likely be found by using individual 
soundings. VAFB soundings were available in the 
National Oceanic and Atmospheric Administration 
(NOAA) Earth System Research Laboratory (ESRL) 
archive in a format that was easy to process. These 
VAFB soundings were downloaded from the NOAA 
ESRL website (http://www.esrl.noaa.gov/raobs/) and 
were collected for the years 1994-2011. 

2.2 Processing 

To calculate the PoV for each wind constraint, the 
data for each sounding needed to be interpolated to 
consistent 1000-ft height levels. The AMU used Perl 
scripts to add the required levels to each sounding and 
then interpolated the wind direction and speed to those 
1000-ft heights. So that the PoV could be depicted 
accurately for the different times of the year, the 
soundings were stratified into four sub-seasons: 
January-March, April-June, July-August, and October-
December. The maximum wind speed and maximum 
1000-ft shear values for each sounding per sub-season 
were then determined. The 30 OSSWF also requested 
the 1000-ft shear be calculated at multiple intervals. For 
example, in addition to the 1000-2000 ft shear, the 
1100-2100 ft, 1200-2200 ft, etc. values were also 
calculated. These values were used in statistical 
equations to calculate the PoV for each constraint. All 
1000-ft layer shear values were calculated using the 
equations depicted in Table 1. 
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3. EXCEL GUI 

The primary goal of this project was to develop a 
tool to determine the PoV for the upper-level wind 
constraints specific to the Minuteman III ballistic missile 
launch vehicle at VAFB. This tool was developed in 
Excel using Visual Basic for Applications (VBA) to 
create a GUI that displays critical sounding data easily 
and quickly for the LWOs on the day of launch. Figure 4 
shows the main page of the GUI, which consists of 13 
worksheet tabs, each with their own displays. 

3.1 Sounding Data 

Information for the soundings is in the first 12 
worksheet tabs of the GUI. The “REVIEW” tab 
summarizes the essential launch constraints for the 
latest sounding and associated sub-season. Once the 
LWOs click the “LOAD NEW BALLOON DATA” button 
they should check the “CURRENT DISPLAYED 
BALLOON DATA” box to ensure the correct sounding 
has loaded into the GUI. To easily compare the current 
sounding data to the climatology for the present sub-
season, the “CURRENT SUB-SEASON INFO” box 
displays the average maximum wind speed and 1000-ft 
shear values for the time period and the sub-season 
PoV of each wind constraint. The PoV results for each 
sub-season are shown in Table 5. 

The “LAUNCH CONSTRAINTS AT A GLANCE” 
box focuses on the latest sounding data. It shows the 
maximum wind speed and its height, the maximum 
1000-ft shear and its layer, plus calculates the PoV for 
each constraint. The PoV for the current sounding is 
calculated using the same equation as the historical 
data, however the mean maximum wind speed value is 
replaced with the current maximum wind speed in the 
layer of interest. The climatological standard deviation is 
still used. This is true for both the maximum wind speed 
and maximum shear wind constraint PoV. The PoV 
calculation assumes the standard deviation for the 
sounding is similar to that of the sub-season, and as 
such, is climatological in nature. The 30 OSSWF could 
not provide launch day soundings that occur within a 
few hours of each other, therefore the AMU could not 
create a method to determine the PoV for some future 
time. Instead, the calculation best indicates the PoV of 
exceeding the given threshold in the current sounding 
assuming the level of peak value was not sampled. 

Below the summary boxes are the “Maximum Wind 
Speed” and “Maximum 1000-ft Shear” graphs that 
display the current sounding data every 100-ft. The 10 
worksheet tabs labeled “X000”, “X100”, … “X900” 
contain data for the additional 100-ft interval shear 
levels the 30 OSSWF requested as mentioned in 
section 2.2. Figure 5 shows an example screen capture 
of the “X100” worksheet tab. This includes the wind 
speed and shear values at the 25,100-26,100 ft,  
26,100-27,100 ft, etc heights. Each worksheet tab 
displays the sounding data at the respective heights, 
calculates the shear and then graphs the wind speed 
and shear values within the range of interest. The “RAW 
DATA” worksheet tab displays the latest raw data for the 
current sounding loaded in the GUI as shown in 
Figure 4.  

3.2 Model Data 

Although not originally requested, the AMU and the 
30 OSSWF discussed adding model point forecast 
sounding data to the GUI. This will provide additional 
insight to the LWOs on launch day when determining if 
a wind constraint violation will occur over the next few 
hours. The 30 OSSWF agreed this would be valuable 
information and so the AMU added this to the tool. The 
RAP model was selected for this application. The model 
was developed for users needing frequently updated 
short-term weather forecasts. It replaced the Rapid 
Update Cycle (RUC) as the operational NOAA hourly-
updated assimilation/modeling system at the National 
Centers for Environmental Prediction (NCEP) on 1 May 
2012. The latest RAP sounding data are available from 
Iowa State University Archive Data Server 
(http://mtarchive.geol.iastate.edu) every hour and 
normally updated by 1 hour and 45 minutes after the 
hour. The “RAP” tab in the GUI displays two sounding 
graphs: one for wind speed and one for wind direction 
(Figure 6). Each graph displays the respective variable 
for the current sounding profile plus 12 1-hour RAP 
forecast soundings. The RAP initialization time is based 
on the current UTC time. 
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4. SUMMARY AND FUTURE WORK 

The 30 OSSWF requested the AMU develop a tool 
that will calculate the PoV of the upper-level wind speed 
and shear constraints specific to the Minuteman III 
ballistic missile on the day of launch. In order to 
calculate each PoV the AMU first collected historical 
sounding data from VAFB. The AMU retrieved the data 
from the NOAA ESRL archive for the years 1994-2011 
and stratified into four sub-seasons for analysis: 
January-March, April-June, July-September and 
October-December. The AMU then determined the 
maximum wind speed and 1000-ft shear values in 
increments of 100-ft for each sounding per sub-season. 
To accurately calculate the respective PoVs the AMU 
determined the distribution of the maximum wind speed 
and maximum shear datasets by fitting these datasets 
to theoretical distributions. The AMU discovered that the 
maximum wind speeds followed a Gaussian distribution 
while the maximum shear values followed a lognormal 
distribution.  

The AMU then developed a GUI in Excel using VBA 
that calculates the PoV for each wind constraint and 
displays current sounding data easily and quickly for the 
LOWs on launch day. In addition to the requirements 
originally requested, the AMU also included forecast 
sounding data from the RAP model. This information 
provides further insight for the LWOs when determining 
if a wind constraint violation will occur over the next few 
hours and will help to improve the overall upper-level 
winds forecast.  

Another way to determine if a wind constraint 
violation will occur over the next few hours would be to 
conduct a statistical wind change study using 50 MHz 
Doppler radar wind profiler data similar to the 
calculations done in Merceret (1997). The results 
provided probabilities of exceeding a magnitude of wind 
vector change over 0.25, 1, 2 and 4 hours. The LWOs 
would determine what wind change between the last 
sounding and the launch time would pose an 
operational threat, and then use pre-calculated values to 
determine the PoV of the constraint. The VAFB 50 MHz 
wind profiler is not yet functioning. Once it becomes 
operational, the AMU suggests the data be archived in 
order to create these values for the 30 OSSWF.
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