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This study simulates regional precipitation, especially extreme precipitation events, 

and the regional hydrologic budgets over the western North Pacific region during the 

period from May to June 2008 by the high-resolution (4-km grid spacing) Weather 

Research and Forecast (WRF v3.2.1) model with explicit cloud microphysics. The 

model initial and boundary conditions are derived from NCEP/DOE R2 reanalysis 

data.  

Adopting the retrieved rainfall from Tropical Rainfall Measuring Mission (TRMM) 

3B42 as a reference for comparison, the WRF simulations reproduce the spatial 

distributions of time mean precipitation amount and rainy days. But the simulated 

frequency distributions of rainy days and rainfall amount show overestimated light 

precipitation, underestimated moderate to heavy precipitation, and well simulated 

extreme precipitation. The vapor budget analysis shows that the heavy precipitation is 

contributed mostly by the stronger moisture convergence. However, in less convective 

periods, the precipitation is more influenced by the surface evaporation. The vapor 

budget is sensitive to the cloud microphysics scheme that affects the location and 

strength of atmospheric latent heating and then the large-scale circulation. 
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Precipitation is an essential parameter describing the monsoon climate. The spatial 

distribution of precipitation indicates the location of atmospheric heat source, and the 

precipitation evolution reflects the variability of monsoon circulation system. 

Meanwhile, precipitation is also a key component of the earth’s hydrological cycle. 

Studying precipitation characteristics is essentially important for understanding 

monsoon circulation and its relationship with other components of the hydrological 

cycle. However, an accurate simulation of summer precipitation, particularly for 

tropical regions, remains a major challenge due to the frequent local-scale convective 

activity [Jenkins, 1997; Kunkel et al., 2002]. Modeling and predicting the tropical 

atmosphere phenomena such as summer monsoons activity, tropical convection, and 

cloud microphysical variable are still deficient for the lack of fundamental knowledge 

over the tropic ocean. 

The East Asian (EA) monsoon and western North Pacific (WNP) monsoon affect 

not only the regional climate but also the vicinity of the region and even the global 

climate through hydrological and energy exchange processes [Lau and Weng, 2002]. 

In the past two decades, many researches on the WNP summer monsoon by using the 

reanalysis data and satellite precipitation dataset had been conducted [Murakami and 

Matsumoto, 1994; Wang et al., 2001; Wang and LinHo, 2002; Conroy and Overpeck, 

2011]. The climate over WNP region depends not only on the atmospheric, but also 

on the oceanic conditions of tropical and subtropical regions. So, the moisture 

transport and hydrological cycle over the EA-WNP region are more complex than 
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those over other regions. For example, the sources of water vapor variations over the 

EA-WNP region commonly come from three areas: the northern Indian Ocean, the 

South China Sea (SCS, including the cross-equatorial transport), and the western 

North Pacific [Zhou and Yu, 2005; Ding and Sikka, 2006]. Furthermore, the spatial 

heterogeneity of rainfall in this region may respond nonlinearly to changes in forcing 

factors [Zhou et al., 2009]. For lack of conventional observations, to present, 

relatively few studies have been dedicated to the regional model performance over the 

WNP region. Our study will focus on the climatology during the onset of SCS-WNP 

summer monsoon in the period from May to June 2008. 
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It is known that the existing global general circulation models (GCMs) horizontal 

grid intervals are too coarse for applications at regional scale regimes [Leung et al., 

2003; Giorgi, 2006]. To mitigate this problem, a dynamical downscaling strategy to 

obtain regional weather phenomena influenced by the local topography or small-scale 

atmospheric features has been conducted in many previous studies [Giorgi, 1990; 

Christensen et al., 1998; Liang et al., 2004; Kanamitsu and Kanamaru, 2007], in 

which GCM or reanalysis data are used to provide lateral boundary condition, sea 

surface temperature, and initial land-surface conditions for more spatially-detailed 

climatologically simulations over a region of interest. The dynamical downscaling 

method is supposed to retain the large-scale circulation, and is intended to add 

information on the smaller scales that the coarse-resolution global model could not 

generate [Castro et al., 2005]. Note that the regional models can add value, but for 

certain variables and locations. Winterfeldt et al. [2010] argued that the dynamical 
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downscaling does not add value to the global reanalysis wind speed in open ocean 

areas because of the relatively homogeneous topography over the ocean. In addition, 

the effects of spatial resolution on regional climate simulations have been discussed 

extensively. Leung and Qian [2003] analyzed the results of 5 yr regional simulations 

for the Pacific Northwest and California, and demonstrated that the 13-km nest 

produces more realistic seasonal mean precipitation as well as more frequent heavy 

precipitation compared to the 40-km nest, which are in closer agreement with the 

observations. Kobayashi and Sugi [2004] showed that the climatology of synoptic 

scale phenomena is well represented and tropical cyclones occurred more frequently 

with higher intensities when increasing global model resolution, improving the 

simulation of Asian monsoon. Improving the precipitation simulation with higher 

spatial resolution was generally reported in many climate studies due to the detailed 

representation of terrain effects and spatial heterogeneity. But now, most of the 

regional climate simulations still use a relatively coarse grid resolution (about 10-40 

km).  
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In addition, Randall et al. [2007] pointed out that the cumulus parameterization 

used in GCMs is another major cause of ambiguity for climate simulation. The details 

of cloud microphysics scheme are expected to be introduced into regional climate 

studies instead of the cumulus parameterization. A global cloud resolving simulation 

with a mesh size of a few kilometers was conducted using a nonhydrostatic 

icosahedral atmospheric model (NICAM) [Miura et al., 2007]. Satoh et al. [2008] 

showed that the relative occurrence of rainfall rate from NICAM is in agreement with 
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that of the TRMM PR dataset for strong rains over the oceans. Tao et al. [2003] 

simulated the mesoscale convective systems over South China Sea with a regional 

climate model and a cloud-resolving model, and indicated that proper simulation of 

precipitation processes probably needs cloud-scale models. However, until recently, 

few models have been run with just explicit microphysics (without using cumulus 

parameterizations) and with fine enough grid spacing (1-4 km) to investigate the 

regional climate mechanisms. 
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The long-term goal of this study is to refine our understanding of clouds and 

precipitation over tropical Pacific warm pool and western North Pacific interacting 

with climate oscillations at seasonal or longer time scales. So the basic properties of 

simulated precipitation as well as regional water cycle in the high-resolution 

dynamical downscaling framework should be explored first. With this aim, several 

questions are addressed: (1) How well does the WRF high-resolution downscaling 

simulated precipitation agree with the observations over the WNP region? (2) Is the 

microphysics crucial for adequate performance of climatological precipitation over 

the ocean? (3) How well does the WRF model represent the regional hydrologic 

budgets?  

The primary focus of this paper is to investigate the capability of cloud-resolving 

WRF model in simulating the characteristics of regional precipitation, especially 

extreme precipitation events as well as the regional hydrologic budgets over the 

western North Pacific. The paper is organized as following: Section 2 describes the 

model, data and experimental design. Section 3 examines the thermodynamic 
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variables. The comparisons of observed and simulated daily mean precipitation, 

percentage of rainy days, precipitation frequency distribution and extreme 

precipitation are presented in section 4. The hydrologic budgets are discussed in 

section 5, and a summary is given in section 6. 
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2. Model, data and experimental design 

2.1 Model description 

The model employed here is the Weather Research and Forecast (WRF) model 

version 3.2.1 [Skamarock et al., 2008]. The WRF model is a mesoscale numerical 

weather system designed for short-term weather forecast as well as long-term climate 

simulation. It is a non-hydrostatic, terrain-following mesoscale model, and is being 

developed and studied by a broad community of researchers in the recent years.  

The Chinese Academy of Meteorological Sciences (CAMS) two-moment 

microphysics is adopted in this study as an alternative microphysical scheme. It was 

developed by Hu and He [1988] and had been tested and employed in many previous 

studies [Hu and He, 1989; Lou et al., 2003; Li et al., 2008; Gao et al., 2011a, 2011b]. 

A total of 11 microphysical variables including the mixing ratio of vapor, the mixing 

ratios and number concentrations of cloud droplet, rain, cloud ice, snow, and graupel 

are predicted in CAMS microphysics. In the past years, the scheme has received many 

significant improvements, such as accurate calculation of supersaturation, detailed 

treatment of autoconversion and droplet nucleation parameterization. Gao et al. 

[2011b] evaluated and improved the CAMS raindrop microphysical parameterization 

against the Southwest Monsoon Experiment (SoWMEX) /Terrain-influenced 
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Monsoon Rainfall Experiment (TiMREX) observations in June 2008.  149 
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2.2. Validation dataset 

The Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall estimation 

version 6, which is a high spatial (0.25° by 0.25°) and high temporal (3 h) 

satellite-derived precipitation dataset available in the latitude band 500S-500N from 1 

January 1998 to present. These data are created by blending passive microwave data 

collected by low earth orbit satellites [such as TRMM Microwave Imager (TMI), 

Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning 

Radiometer (AMSR), Advanced Microwave Sounding Unit (AMSU)], and the 

infrared (IR) data collected by the international constellation of geosynchronous earth 

orbit (GEO) based on calibration by the precipitation estimate of the TMI-PR 

combined algorithm. The physically based combined microwave estimates are used 

where available, and the remaining grid boxes are filled with microwave calibrated IR 

estimates [Huffman et al., 2007]. 

2.3 Experimental design 

The model domain is designed to consist of three one-way nested domains as shown 

in Fig. 1. The numbers of grid points and corresponding horizontal grid resolutions for 

domains 1, 2, 3 are 290×210×35 at 36-km, 541×421×35 at 12-km and 883×691

×35 points at 4-km, respectively. The lateral boundary condition is specified at the 

lateral boundary grid points and the neighboring 4-grid relaxation zone. To capture the 

large-scale processes important for Pacific Northwest climate, the outermost domain  
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encompasses nearly the entire East and Central Asia continent and much of the 

western Pacific Ocean. The use of such a large outer domain keeps the outer 

boundaries far from the innermost domain to ensure that weather systems approaching 

the Pacific Northwest are free from lateral boundary influences. The second nested 

domain covers the East Asia continent and the western North Pacific, capturing the 

tropical convections and East Asian monsoon circulations that influence the Pacific 

Northwest. The innermost domain covers the South China Sea and portions of the 

western North Pacific. 
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For non-hydrostatic cloud resolving models, the choice of horizontal and vertical 

grid resolutions is always an important issue. Different resolutions in such models can 

have a major impact on the resolved convective processes [Weisman et al. 1997; 

Tompkins and Emanuel 2000]. Weisman et al. [1997] suggested that a minimum grid 

length of 4 km is necessary to reasonably simulate the internal structures and 

mesoscale circulations of a midlatitude squall line. Tompkins and Emanuel [2000] 

suggested that a high vertical resolution (less than 33 hPa) is needed to develop a high 

degree of vertical structure in water vapor profiles and stratiform precipitation 

processes. The effect of resolution on simulated cloud systems has also been 

performed by evaluations of simulated clouds against observed cloud quantities [e.g. 

Johnson et al. 2002; Satoh et al. 2010, 2012 and references therein]. Satoh et al. [2010, 

2012] compared the simulated cloud properties by a global cloud resolving model 

with a mesh sizes of 3.5, 7 and 14 km with satellite data. They found that the general 

characteristics of the cloud distribution are similar, but the cloud thickness and the 
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size of the mesoscale convective system depend quantitatively on resolution. Based 

on the above considerations and on the limitation of the computer resources, we 

choose the mesh size of 4 km in the current study. 
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The initial and lateral boundary conditions are interpolated from the NCEP/DOE 

reanalysis 2 data (hereafter R2) [Kanamitsu et al., 2002]. The lateral boundary 

conditions are updated every 6 hours. The sea surface temperature (SST) from R2 

data is also updated every 6 hours. The physics schemes used are Noah land surface 

model [Chen and Dudhia, 2001], Yonsei University (YSU) planetary boundary-layer 

scheme [Hong et al., 2006], Grell-Devenyi cumulus parameterization [Grell and 

Devenyi, 2002], rapid radiative transfer model long-wave radiation [Mlawer et al., 

1997] and Dudhia short-wave radiation [Dudhia, 1989]. No cumulus parameterization 

is used in domain 3. In order to assess the impact of microphysics on the precipitation 

process in 4-km model resolution, two microphysics schemes are conducted: Goddard 

3ICE [Tao and Simpson, 1993] and CAMS. Goddard 3ICE is a one-moment scheme, 

it predicts only the mixing ratios for five hydrometeor species. Goddard scheme is 

mainly based on Lin et al. [1983] with additional processes from Rutledge and Hobbs 

[1984]. Several modifications have been made in the past years. e.g., new saturation 

techniques [Tao et al., 2003] are added; all microphysical processes that do not 

involve melting, evaporation or sublimation are calculated based on one 

thermodynamic state; the sum of all sink processes associated with one species will 

not exceed its mass. Whereas, CAMS is a two-moment scheme, it predicts both the 

mixing ratios and number concentrations for five hydrometeor species (including 
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droplet number). 214 
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The simulation period is from 0000 UTC 1 May to 2400 UTC 30 June 2008. The 

model is re-initialized every 2 days. Each re-initialization runs for 12 hours 

proceeding the initial time of each 2-day simulation by nudging the horizontal winds 

above 850 hPa at each grid toward the reanalysis values. The re-initialization is a 

simple spin-up run to produce a set of initial fields every two days in the two-month 

integration period to mitigate the climate drift in regional climate simulations 

[Dickinson et al., 1989; Qian et al., 2003]. Grid nudging is applied in the two outer 

model domains (D1 and D2) but not in the innermost domain (D3), which allows the 

mesoscale model to freely develop atmospheric structure at finer spatial scale. The 

model outputs at every 6 hours are used for the evaluation.  

3. Evaluation of model thermodynamic variables 

To evaluate the state variables, we compare the model simulated temperature and 

humidity with R2 data. Figure 2 shows the difference of mean dry static energy 

( , where CpDSE c T+gz= p is the specific heat at constant pressure, T absolute 

temperature, g the gravitational acceleration and z the height above surface) and latent 

heat energy (Lvq, where Lv is the latent heat of vaporization, q the water vapor mixing 

ratio) averaged over domain 3 during May to June 2008 between WRF simulations 

and R2 reanalysis. The value of DSE shown in Fig. 2 is determined mainly by the air 

temperature. The model simulated temperature by the two cloud schemes differ from 

the R2 data within 1oC, and the CAMS scheme simulated temperature is slightly 

warmer than that in Goddard scheme. Compared with the R2 data, the two simulations 

 11



show a common warm bias in the upper troposphere above 200 hPa, and a common 

cold bias in the low troposphere below 850 hPa. Associated with the model cold bias in 

the lower troposphere, model results also show a common moist bias. But the two cloud 

schemes produce opposite moisture bias above 850 hPa. More latent heat release, 

which results in heating the atmosphere, is likely 
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responsible for the warmer and more 

humid air above the boundary layer in CAMS scheme than those in Goddard scheme 

through the thermodynamic feedback processes. But the common moist and cold 

biases in the two WRF simulations are indicative of deficiencies in the model boundary 

layer process. 

The diurnal cycles of model temperature and humidity are further examined by 

forming a diurnal composite of vertically integrated saturation water vapor mixing ratio 

(qs) and water vapor mixing ratio (q) averaged over domain 3 from 30 consecutive 

two-day integrations during May to June 2008. The composite qs and q are shown in 

Fig. 3a and 3b, respectively. Since qs is function of temperature, the diurnal qs from R2 

shows a maximum value near 06 UTC (local time 3 pm) and a cooling trend toward a 

minimum value near 24 UTC (local time 9 am) with an amplitude of about 4 kg m-2. 

The two WRF simulations show a similar diurnal change characterized by a warm 

phase near 06 to 12 UTC and a cold phase near 18 to 24 UTC with a smoother phase 

change and a weaker amplitude than that of R2 data. The difference between the 

simulated and assimilated qs is clearly resulted from the cloud radiative interactions in 

the cloud-resolving physics. The higher qs from CAMS scheme than that from Goddard 

scheme (by about 2 4 kg m-2) is consistent with the difference in simulated DSE profiles 
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shown in Fig. 2a. The composite curves of q for the model and R2 data show very 

weaker diurnal cycles with no consistent phase changes. This indicates that the water 

vapor field in the domain of interest is dominated by synoptic scale disturbances. The 

simulated q by CAMS is somewhat larger than that by Goddard, but the simulated 

precipitation by CAMS is significantly larger than that by Goddard which is correlated 

with the moisture convergence. This will be discussed in detail in section 5. 
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4. Evaluation of model precipitation 

Precipitation is an important quantity for climate studies, and reducing the 

precipitation bias is one of the major goals for regional climate simulations. The 

TRMM 3B42 daily precipitation data are used as a reference in this study. The R2 

reanalysis data and WRF simulations are spatially re-gridded onto 0.25 grid points, 

the same as the TRMM dataset, for comparison purpose. Note that no interpolation is 

used when calculating the precipitation frequency. 

4.1 Mean precipitation pattern 

Figure 4 shows the spatial distribution of time mean precipitation during May to 

June 2008 from TRMM observations, R2 reanalysis, and WRF simulations. The 

major monsoon rainbands are located over the Philippine Sea, South China Sea, and 

the southeast China coast. The location of rainfall center over the ocean is near the 

9.5°N, 131°E, and the maximum value is about 21 mm day-1 (Figure 4a). The WRF 

simulations reproduce the characteristics of daily mean precipitation well with the 

TRMM observations. The patterns of spatial distribution from WRF model clearly 

show an improvement compared with R2 reanalysis, which has a wet bias over the 
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ocean, and has a strong dry bias over the southeast China coast. The Goddard scheme 

reduces the wet bias of R2 reanalysis over the ocean; on the contrary, the CAMS 

scheme introduces a wet bias relative to R2 reanalysis. Although the CAMS scheme 

produces the maximum daily mean precipitation with a value about 21 mm day

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

-1 over 

the ocean, similar to the TRMM observation, it overestimates the range of heavy 

precipitation. The spatial distributions of daily mean precipitation in Fig. 4 show that 

the two microphysics schemes produce similar precipitation patterns, but different 

precipitation amount.  

To quantitatively evaluate the performances of WRF model in simulation of 

precipitation, the time mean precipitation averaged over domain 3, the pattern root 

mean square error (RMSE) and pattern correlation coefficients with respect to the 

TRMM observations are listed in Table 1. Also included in the Table is the time mean 

precipitation from the assimilation product R2. Results show that the simulated spatial 

and temporal mean precipitation in Goddard scheme is slightly less than observation, 

while that in CAMS scheme is somewhat larger than observation, indicating that 

climatological precipitation in the northwest Pacific warm monsoon season is sensitive 

to cloud microphysics scheme. This is consistent with the finding that the skill in 

simulating tropical precipitation systems is generally poorer than that in mid-latitude 

systems [Wang et al., 2003; Lee et al., 2004] due to weak baroclinic instability and 

complicated physical processes in East Asia. Table 1 further shows that the time mean 

patterns of precipitation simulated by the high-resolution WRF with the two 

microphysics schemes have smaller pattern RMSE and higher pattern correlation with 
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the TRMM precipitation than that produced by R2. This indicates that the high 

resolution WRF with an explicit cloud microphysics can reasonably resolve mesoscale 

variability, and is capable of simulating accumulated precipitation distribution in 

properly designed regional climate downscaling simulation.  
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4.2 Temporal evolution of the precipitation 

The model performances in reproducing the northward migration of tropical and 

subtropical fronts and associated rain bands are examined. Figure 5 shows the 

time-latitude cross-section of daily precipitation along the longitudinal band between 

110° and 145°E. Two major phases of northward movement of convection zone from 

near the equator to about 25°N are observed (middle of May and end of June). The 

average speed of northward propagation is about 1.0° latitude per day. The northward 

movement reflects the seasonal migration of the EA-WNP monsoon rain bands. The 

WRF model and R2 reanalysis generally reproduce the two northward marches of rain 

bands. But, they all fail to simulate the weak northward rain band from 10° to 25°N in 

the period from end May to early June. In addition, the temporal correlation 

coefficients between TRMM observed and WRF simulated daily precipitation are 

similar to that between TRMM observed and R2 reanalysis (area averaged ～0.34), 

indicating that the current WRF downscaling simulation is not improving the 

temporary variability significantly. Since many atmospheric variability fields which 

lead to precipitation are constrained by observations twice a day in the reanalysis data, 

so no obvious improvements are made in the timing of precipitation. 
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4.3 Precipitation frequency 323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

We next analyze frequency distributions of rainy days and precipitation. The 

percentages of all days with precipitation exceeding 0.1 mm day-1 (the definition of 

rainy day in this study) and 50 mm day-1 during May to June 2008 are calculated. 

The percentage of rainy days is largely affected by the re-gridded data [Osborn and 

Hulme, 1997; Ensor and Robeson, 2008], which will potentially generate systematic 

biases in the comparison. For example, the averaged precipitation frequency of rainy 

days will increase about 15 % when using the re-gridded data instead of the original 

data in our study. So, we use the results from all the original model outputs and do not 

interpolate them to the resolution of TRMM observations when calculating the 

precipitation frequency. This approach helps to directly derive information from the 

model itself, especially for models with a relatively high resolution [Sun et al., 2006]. 

The percentage of rainy days in TRMM dataset is higher over the southernmost and 

northernmost of domain 3. The R2 reanalysis overestimates the frequency of rainy 

days over the ocean compared to the TRMM dataset. As we expect, the patterns of 

rainy day frequency are improved in WRF simulations than that in R2 reanalysis 

(Figure 6). The WRF simulations evidently reduce the percentage of rainy days in the 

southern part of domain and increase that in the northern part of domain, conforms to 

the TRMM observations. Note that the CAMS two-moment scheme produces a little 

more rainy days than that from Goddard one-moment scheme (there exist areas where 

the percentage of rainy days is less than 30%). This is attributed to the conclusion in 

Morrison et al. [2009] who found that two-moment microphysics can produce a wider 
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spread of stratiform precipitation as a result of weaker rain evaporation rate below the 

melting layer compared to one-moment microphysics in the stratiform region. The 

rate of rain evaporation is associated with the difference in predicted rain size 

distribution intercept parameter (which is larger in the stratiform region than that in 

two-moment scheme but is specified as a constant in one-moment scheme). That is, 

the raindrop number concentration in two-moment scheme is usually less than that in 

one-moment scheme in the stratiform region, resulting in weaker rain evaporation rate. 

Additionally, the representation of cloud droplet concentration is probably another 

reason for the difference. Saleeby et al. [2010] showed an increase in aerosol 

concentration over the East China Sea by the discrepancies in rainfall estimates 

between the TRMM PR and TMI sensors. In CAMS scheme, similar increase of 

droplet concentration over domain 3 (reach up to 300 cm
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-3 sometimes) will reduce the 

autoconversion efficiency of cloud water to rain. As a result, raindrop number 

concentration decreases, mean raindrop diameter and collision coalescence rate 

increase, leading to high rainfall frequency during the rain formation process under 

the condition of sufficient water vapor. Li et al [2011] also revealed that the rainfall 

frequency increases with increasing condensation nuclei for high liquid water path 

(LWP). 

Table 2 shows the mean precipitation amount, percentage of rainy days, and 

precipitation intensity (precipitation divided by percentage of rainy days) averaged 

over domain 3. Some previous studies have focus on these characters of precipitation 

[Dai, 2001; Sun et al., 2006]. The percentage of rainy days with precipitation 
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exceeding 0.1 mm day-1 from TRMM dataset is 47.4%. The R2 reanalysis and WRF 

model outputs fall between 49.1 and 57.1%, which are a little larger than the TRMM 

observations. The percentage of rainy days from Goddard scheme tends to be lower 

than that from CAMS scheme as discussed above. As a result, the model precipitation 

intensities from R2 reanalysis and WRF simulations are slightly weaker than the 

TRMM precipitation intensity. 
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The percentage of days with heavy precipitation (exceeding 50 mm day-1) is shown 

in Figure 7. Typical summer monsoon heavy rainbands are located over the Philippine 

Sea, South China Sea, and southeast China coast. The R2 reanalysis, limited by coarse 

resolution and cumulus parameterization, underestimates heavy rainfall events 

compared to the TRMM observations. The WRF downscaling simulations are 

evidently improved than that from R2 reanalysis, especially over southeastern China 

and South China Sea. However, CAMS scheme overestimates the frequency of heavy 

precipitation by up to 3-6 percentage points over the Philippine Sea, resulting in larger 

precipitation amount over there. Note that the broad feature of heavy precipitation 

frequency follows a similar spatial pattern compared to that of the daily mean 

precipitation (Figure 4), especially for the locations with maximum values. The 

maximum accumulated precipitation amount is clearly attributable to the heavy 

precipitation events. 

To further examine the rainfall frequency distribution, the observed TRMM daily 

precipitation in the period of May to June 2008 within the domain 3 is partitioned into 

12 bins (only the rainy days are included), covering the first nine decile bins (0-10%, 
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10-20%, ... 80-90%) and the 90-95%, 95-99%, and 99-100% bins. In the following 

discussions, 0-30% bin is taken as light precipitation; 30-60% bin as moderate 

precipitation; 60-90% bin as heavy precipitation; 90-100% bin as very heavy 

precipitation, and the top 1% as extreme precipitation.  
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In addition to the TRMM data, we also calculate the frequency distributions for 

model assimilated R2 and WRF simulated rainfall data. The daily precipitation at 

original grid resolution for the same period and domain from each datasets are used. 

The calculated frequency distributions are shown in Figure 8. For light precipitation 

especially the first percentile bin (precipitation rates between 0.1 and 0.6 mm day-1), 

the WRF simulated frequency is much higher; while the assimilated frequency in R2 

reanalysis is lower. For moderate to heavy precipitation, the WRF simulations are 

generally lower, and R2 reanalysis data show the opposite frequency. For the very 

heavy precipitation, R2 reanalysis data obviously underestimate, especially the top 1% 

extreme precipitation (great than 107.5 mm day-1). The above features confirm the 

reasoning that the R2 reanalysis data cannot resolve the physical processes and 

mesoscale weather systems to produce extreme precipitation. The WRF simulated 

extreme events are in good agreement with the TRMM observations due to the 

cloud-resolving microphysics resolved in high resolution WRF model. Better 

representation of climate extreme is a key consideration for regional climate 

simulation, and the WRF results here show a reasonable skill and add more value to 

the downscaling approach in reproducing the very heavy precipitation.  

The WRF simulated precipitation frequency by the two cloud schemes in Figure 8 
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show that the CAMS scheme produce less frequency in light rains and slightly more 

frequency in heavy rains compared with those from Goddard scheme. Note that only 

the days with precipitation amount exceeding 0.1 mm day
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-1 are included in the 

statistics. Li et al. [2011], using the observations at the Southern Great Plains (SGP) 

site during the summer seasons, suggested that light rains occur less frequently and 

heavy rains occur more frequently under polluted conditions than under clean 

conditions. The simulated cloud droplet concentrations in CAMS scheme can 

sometimes reach up to ～300×106 m-3 and are higher than the common value over the 

ocean (i.e., ～50×106 m-3), to some extent like the real polluted conditions over NWP 

region [Berg et al. 2008]. In addition, the features of precipitation frequency 

distribution from R2 reanalysis are qualitatively opposite to those from WRF 

simulations, probably due to the cloud-resolving microphysics used in WRF model 

whereas the cumulus parameterization used in R2 reanalysis. The microphysics 

scheme usually produces larger area of stratiform precipitation than that from cumulus 

parameterization [Chin et al., 2010].  

To investigate the distribution of precipitation amount, Figure 9 shows the observed 

and simulated percentage of precipitation amount in the two summer monsoon months 

over WNP region (Domain 3) as a function of precipitation rate. The bins used here 

represent the light (0-30%), moderate (30-60%), heavy (60-90%), and very heavy 

(90-95%, 95-99%, and 99-100%) precipitation, respectively. The TRMM observations 

exhibit a broad frequency distribution with the peak between 9.9 and 38.4 mm day-1 

(the third bin, heavy rain). The WRF simulations produce slightly more light 
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precipitation than the TRMM observations because of too much light rain days 

(Figure 8). The light precipitation contributes only about 3% of the total precipitation 

amount although the occurrence frequency is the highest. The total precipitation 

amount comes mainly from the heavy precipitation bin, and the R2 reanalysis 

overestimates the contribution of heavy precipitation to the total precipitation (～53%) 

because of higher occurrence frequency. In addition, the percentages for the very 

heavy precipitation (exceeding 56 mm day
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-1 above top 5%) in R2 reanalysis decrease 

rapidly, corresponding to the lower occurrence frequency of very heavy precipitation. 

On the contrary, the WRF simulated extreme amount (top 1%) is slightly stronger but 

close to the TRMM observations. The accumulated extreme precipitation amount is 

comparable to that of the moderate precipitation (the second bin).  

One of the main advantages of dynamical downscaling identified in previous 

studies is about the improvement in simulating extreme events over land due to a more 

realistic representation of topography. Here our results show a notable improvement in 

simulated extreme precipitation over the ocean, apparently due to explicitly resolved 

cloud microphysics with high spatial resolution. Note that some heavy precipitation 

events over the southeast China coast are included in our analysis, but the majority of 

very heavy precipitating events occurred over the warm NW Pacific and the rainfall 

statistics shown in Fig. 8 and 9 is not expected to be affected. 

 

5. Hydrologic budgets 

In this section, the hydrologic budget is analyzed to further understand relevant 
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precipitation processes. We calculate the atmospheric hydrologic budget averaged 

over domain 3 during May to June 2008 by the following conservations equation for 

water vapor [Peixoto and Oort, 1983]: 
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where q and V are specific humidity and horizontal wind vector at pressure level p,  

ps is the surface pressure, the first two terms on the left hand side represent the 

tendency change of precipitable water and the moisture flux divergence, E and P on the 

right hand side are surface evaporation and precipitation. We use the 6 hourly 

reanalysis data and the model outputs to calculate the above budget terms. 

Figure 10 shows the simulated daily mean moisture convergence, evaporation, 

precipitable water tendency, and precipitation by WRF with CAMS scheme. Results 

show that the spatial distribution of precipitation coincides with that of the moisture 

convergence, and evaporation has a near uniform distribution with a magnitude near 

half of the precipitation amount. This is similar to the result of Xue et al. [2004] who 

investigated the monsoon development over East Asia and West Africa, and found that 

the monsoon precipitation is related more closely to the moisture convergence field 

rather than surface evaporation.  

Integration of Eq. (1) over the region specified as the domain 3 in the WRF 

experiments yields: 

MC P E dW= − +                         (2) 

Eq. (2) states the total amount of water vapor that enters the domain (MC) should be 

balanced with the precipitation (P) and precipitable water tendency (dW) minus 
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evaporation (E) [Wang and Yang, 2008]. Figure 11 exhibits the time evolutions of the 

four moisture budget terms in Eq. (2) from R2 reanalysis and WRF simulations. The 

red line denotes the residual term (MC
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res) defined as the sum of the three terms on the 

right-hand side of Eq. (2). Results show that the water vapor convergence in R2 

forcing fields somewhat differs from the residual term MCres (Figure 11a). This 

imbalanced water vapor budget in the reanalysis data is mainly induced by the 

artificial nudging process [Roads et al., 2002]. The imbalance here is small because 

the budget is averaged mostly over the ocean relative to budget over the land surface 

that can be made up of mountain, various vegetation etc., and cause large difference in 

surface heating. The calculated budgets using the two WRF outputs are balanced with 

vapor convergence (MC) in close agreement with MCres (Fig. 11b and 11c). The 

temporal mean vapor budget terms in Eq. (2) for the period of May to June 2008 

(Table 3) show that values of evaporation in R2 reanalysis and WRF simulations are 

similar (near 4 mm day-1); however, the moisture convergence in CAMS scheme is 

about 3 times stronger than that in Goddard scheme. Consequently, the simulated total 

precipitation in CAMS scheme is larger than that in Goddard microphysics scheme. 

This is more evident in Fig. 11 during the periods of heavy precipitation in the middle 

of May and end of June, the precipitation intensity is quite consistent with the amount 

of moisture convergence, corresponding to the strong monsoon rainbands and tropical 

cyclone activities reported in Figure 5, indicating that the heavy precipitation events 

are contributed mainly by the stronger moisture convergence. During less convective 

periods, the mean evaporation contributes more to the mean precipitation amount than 
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the moisture convergence. The magnitude of mean precipitation with Goddard scheme 

during these periods is almost the same as that of evaporation. 
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Figure 12 shows the mean moisture flux vector (m kg s-1 kg-1) at 850 hPa and the 

corresponding moisture flux convergence fields (mm day-1) averaged over May and 

June 2008 derived from R2 reanalysis, and WRF simulations. The patterns of 

moisture flux convergence are generally in agreement with that of daily mean 

precipitation (Figure 4), implying that the spatial distribution of precipitation is 

mainly decided by the moisture convergence field. Two major flows of water vapor 

transport are evident in the region of analysis. One comes from the Bay of Bengal, 

entering into southeastern China and the subtropical WNP region through the South 

China Sea; the other comes from the tropical western Pacific, entering the subtropics 

along the western edge of the WNP subtropical high. The wind direction near the 

southern boundary in Goddard scheme (Fig. 12b) is almost easterly, resulting in less 

water vapor transport into the domain compared to that from CAMS scheme. In 

addition, the WRF simulations show weaker moisture convergence over the western 

South China Sea and stronger moisture convergence over the southeastern China 

compared with that in R2 reanalysis. But, the WRF simulations are quite different 

over the WNP region. The moisture convergence from CAMS scheme is stronger than 

that from Goddard scheme because of the differences in simulated wind fields.  

Although the two WRF simulations are subject to the same boundary forcing from 

the R2 reanalysis, the two microphysics schemes cause considerable differences in the 

simulated location and strength of precipitation and atmospheric latent heating, which 
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in turn significantly modify the large-scale circulation. As a result, the CAMS scheme 

produces stronger moisture convergence than the R2 reanalysis, and the Goddard 

scheme produces weaker moisture convergence. The downscaling results suggest the 

importance of convective heating in summer monsoon climate over the WNP region. 

This is consistent with tropical wave dynamics that latent heat release is a dominant 

forcing that drives the large-scale circulation [Chang et al., 1982]. So, a proper 

representation of model microphysics is critical in simulating rainfall distribution and 

latent heating which is as important as the large-scale dynamics governing tropical 

waves, monsoon surges, and climate oscillations in the tropical and NW Pacific climate 

region. 
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6. Summary and conclusion 

Precipitation is a key climate quantity, and reducing the precipitation bias is one of 

the major goals for improving climate simulations. In this paper, we evaluate the 

capability of the cloud-resolving WRF via a dynamical downscaling approach, on 

simulating regional precipitation, especially extreme precipitation events and the 

regional hydrologic budgets over the western North Pacific. The period of study is 

from May to June 2008, the period of transition from the onset of South China Sea 

monsoon to the WNP summer monsoon. 

Our analysis indicates that the R2 reanalysis data well represents the large-scale 

characteristics of daily mean precipitation over the WNP region, but not the spatial 

distribution of precipitation revealed in the TRMM observations dominated by extreme 
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rainfall events. This is due to the low resolution and parameterized convective 

processes in R2 reanalysis which inadequately resolve mesoscale precipitating features 

and smooth out the extreme events. The WRF downscaling simulations, however, 

reasonably produce more detailed spatial distribution of daily mean precipitation as 

reflected by higher pattern correlation coefficients and smaller pattern RMSE with the 

TRMM observations.  
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The percentage of rainy day (exceeding 0.1 mm day-1) from WRF simulations are 

evidently improved than that from R2 reanalysis data. The CAMS scheme produces a 

little more rainy days than that from Goddard scheme. This is attributed to the 

two-moment microphysics in CAMS causing widespread stratiform precipitation due 

to weaker evaporation of rainwater below the melting layer relative to the one-moment 

microphysics in Goddard. Meanwhile, the spatial patterns of rainy days with 

precipitation exceeding 50 mm day-1 from WRF simulations are similar to the spatial 

patterns of daily mean precipitation, indicating that the maximum accumulated 

precipitation amount is mainly contributed by heavy precipitation events. In addition, 

the WRF simulations overestimate the frequency of light precipitation, somewhat 

underestimate the frequency of moderate to heavy precipitation, but well represent the 

frequency of very heavy precipitation, compared with the frequency distribution from 

TRMM data.  

The moisture convergence from WRF simulations balances with the sum of 

precipitation and precipitable water tendency minus evaporation. During more 

convective periods, the precipitation amount is primarily contributed by moisture 
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convergence. In less convective periods, the precipitation amount is more contributed 

by evaporation. The WRF simulations with these two microphysics schemes produce 

significantly different budget balance. Compared with the R2 budget, the moisture 

convergence is smaller in the Goddard scheme but larger in the CAMS scheme. The 

significant difference in simulated vapor budgets indicates the importance of resolving 

convection in tropical monsoon region that affects the precipitation, atmospheric latent 

heating and then the large-scale circulation. 
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Figure 1. Geographic locations of the three domains used in the numerical simulation. 

Figure 2. The difference of (a) DSE and (b) Lvq (kJ kg-1) between the WRF 

simulations and R2 reanalysis 

Figure 3. The diurnal composites of vertically integrated (a) saturation water vapor 

mixing ratio and (b) water vapor mixing ratio averaged over domain 3 from 30 

consecutive two-day integrations 

Figure 4. Spatial distribution of the daily mean precipitation (mm day-1) during May 

to June 2008 from (a) TRMM, (b) R2 reanalysis, and (c), (d) WRF simulations. 

Figure 5. Precipitation (mm day-1) as a function of time and latitude averaged over 

110°-145°E from (a) TRMM, (b) R2 reanalysis, and (c), (d) WRF simulations. 

Figure 6. Percentage of days with precipitation rate exceeding 0.1 mm day-1 during 

May to June 2008 from (a) TRMM, (b) R2 reanalysis, and (c), (d) WRF 

simulations. 

Figure 7. As Figure 4 but for precipitation rate exceeding 50 mm day-1. 

Figure 8. Probability distribution of observed and simulated daily precipitation at 

different intervals over domain 3.  

Figure 9. Percentage of observed and simulated precipitation amount as a function of 

precipitation rate over domain 3. 

Figure 10. Daily mean (a) moisture convergence, (b) evaporation, (c) precipitable 

water tendency, and (d) precipitation (mm day-1) derived from CAMS 

microphysics during May to June 2008. 
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Figure 11. Time evolution of the daily mean moisture budget averaged over domain 3 

from (a) R2 reanalysis, (b) Goddard, and (c) CAMS simulations. 

793 

794 

795 

796 

797 

Figure 12. Mean 850 hPa moisture flux vector (m kg s-1 kg-1) with associated moisture 

convergence fields (mm day-1) averaged over May and June 2008 from (a) R2 

reanalysis, (b) Goddard, and (c) CAMS simulations. 
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799 Figure 1. Geographic locations of the three domains used in the numerical simulation. 
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Figure 2. The difference of (a) DSE and (b) Lvq (kJ kg-1) between the WRF 

simulations and R2 reanalysis 
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Figure 3. The diurnal composites of vertically integrated (a) saturation water vapor 

mixing ratio and (b) water vapor mixing ratio averaged over domain 3 from 30 

consecutive two-day integrations 
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809 

Figure 4. Spatial distribution of the daily mean precipitation (mm day-1) during May 

to June 2008 from (a) TRMM, (b) R2 reanalysis, and (c), (d) WRF simulations. 
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812 

Figure 5. Precipitation (mm day-1) as a function of time and latitude averaged over 

110°-145°E from (a) TRMM, (b) R2 reanalysis, and (c), (d) WRF simulations. 

 43



 813 

814 

815 

Figure 6. Percentage of days with precipitation rate exceeding 0.1 mm day-1 during 

May to June 2008 from (a) TRMM, (b) R2 reanalysis, and (c), (d) WRF simulations. 
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 816 

817 Figure 7. As Figure 6 but for precipitation rate exceeding 50 mm day-1. 
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Figure 8. Probability distribution of observed and simulated daily precipitation at 

different intervals over domain 3.  

 46



 821 

822 

823 

Figure 9. Percentage of observed and simulated precipitation amount as a function of 

precipitation rate over domain 3. 
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827 

Figure 10. Daily mean (a) moisture convergence, (b) evaporation, (c) precipitable 

water tendency, and (d) precipitation (mm day-1) derived from CAMS microphysics 

during May to June 2008. 
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Figure 11. Time evolution of the daily mean moisture budget averaged over domain 3 

from (a) R2 reanalysis, (b) Goddard, and (c) CAMS simulations. 
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834 

Figure 12. Mean 850 hPa moisture flux vector (m kg s-1 kg-1) with associated moisture 

convergence fields (mm day-1) averaged over May and June 2008 from (a) R2 

reanalysis, (b) Goddard, and (c) CAMS simulations. 
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Table 1. Area-averaged daily mean precipitation (mm day-1), pattern RMSE (mm day-1) 

and pattern correlation coefficients between the observed and simulated daily mean 

precipitation shown in Figure 4. 

835 

836 

837 

 TRMM R2 Goddard CAMS 

Mean  7.03 7.38 6.24 8.01 

Spatial RMSE - 4.20 3.26 4.00 

Spatial correlation - 0.26 0.53 0.48 
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Table 2. Area-averaged daily mean precipitation (mm day-1), percentage of rainy days 

(%) and precipitation intensity (mm day

838 

839 -1). 

 TRMM R2 Goddard CAMS 

Mean  7.03 7.38 6.24 8.01 

Rainy days 47.4 55.6 49.1 57.1 

Intensity 14.8 13.3 12.7 14.0 
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Table 3. The daily mean hydrologic budget terms averaged over domain 3 during May 

to June 2008. 

840 

841 

 MC E P dW 

R2 3.03 3.86 7.38 0.05 

Goddard 1.31 4.58 6.26 -0.45 

CAMS 4.26 4.38 8.01 0.42 
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