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1 Introduction

The coincidence between gravity waves (GW)
and clear-air turbulence (CAT) has been evident
for a long time (e.g. Bekofske and Liu, 1972).
In recent years due to better data availability
and improving understanding of GW dynamics
possibilities of predicting CAT induced by GW
are being researched (e.g. Kopec et al., 2011;
Sharman et al., 2012; Knox et al., 2008). In this
work we investigate application of an approach
based on the work of Haman (1962). We
assume that at some low altitude (e.g. top of
the boundary layer) shallow convective motions or
other processes generate small wave-like vertical
displacement of the air. The idea behind our
method is that in certain conditions the amplitude
of this initially small disturbance will grow with
altitude, until linear approximation ceases to be
valid, and then break up generating turbulence.
The equation governing vertical dependence of
the vertical displacement of an air parcel due to
a monochromatic GW characterized by certain
wavenumber k and phase speed ε is of the form
(Haman, 1962):
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Here z denotes altitude, ’ denotes d/dz, s(z)
is the wave amplitude (vertical profile of vertical
displacement from the mean flow), k= |k| is the
length of the wave vector k, u = k−1u · k is
the wind speed component in the direction k, ω
is the angular frequency, ε = ω

k is the phase
velocity of the wave characterized by k and ω, g
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is gravity acceleration, Γ = (g/cp) is the adiabatic
lapse rate, β = Γ+T ′

T is the stability of the air,
T is temperature, and c is the speed of sound.
Of course real life disturbances are far from
being a monochromatic waves and are rather
linear combinations of infinite number of such
waves. Yet the equation 1 shows that atmospheric
profiles can be understood as a filter in case
of gravity waves. Some parts of the spectrum
are damped whilst other are amplified. To gain
statistical knowledge about this filtering in certain
background conditions we solve many Cauchy
problems for equation 1. The parameters k and ε
are chosen in such manner that ensures uniform
and isotropic probing of a spectrum potentially
associated with shallow convection clouds. That
is wavelegths ranging from 500m up to 2000m
and angular frequency ranging from -0.1rad/s to
0.1rad/s which correspond to typical spatial and
temporal scales of shallow convection.

The last part of the necessary theory is the
breaking criterion. Following Kopec et al. (2011)
K =

∣∣u−ε
u

∣∣ ((2π)−1k|s| + |s′|) is the ratio of the
nonlinear terms magnitude to the magnitude of
linear terms in the momentum equation used to
obtain equation 1. Note that this quantity is
only a rough estimate where only leading order
terms were taken into account. We assume
that linearization is no longer valid when K≥ 1.
Moreover we will assume that the wave breaks
into turbulence at the level this occurs and thus
is not present above. It is removed from the
spectrum. We will also assume that when a
critical level is reached the same happens. It
needs to be mentioned that this assumption
is a simplification significantly different than
the approach presented in Knox et al. (2008);
McCann (2001). Yet, for simplicity we will hold
this to be valid.



In summary, our analysis assumes that:

1. At the top of the boundary layer a uniform
and isotropic spectrum of disturbances is
present.

2. Evolution of vertical displacement with height
is given by equation 1.

3. The wave breaks into turbulence at the
level where either it exceeds the linearity
criterion K< 1 or it encounters a critical
level, whichever is lower. Such wave is not
present above - no secondary waves or crest
turbulence are considered.

Accepting above assumptions a set of 1890
Cauchy problems is then solved for each
atmospheric profile we are interested in (for a
numerical weather model grid we would need
to solve such set for each grid point to obtain
a turbulence forecast). The result is a set of
1890 wave breaking heights. To convert this
information into a single scalar, which would be
related to CAT occurrence in Kopec et al. (2011)
we simply calculated a density of broken waves
per meter of altitude. In this paper we will
use similar measure N∆(z) being the number
of breaking waves in a layer of thickness 2∆
centered around an altitude z.

2 The data used for verification

The observation dataset used to assess the
prediction efficiency of the method described
above consisted of a set of 4011 AMDAR
messages covering Europe in January, February
and March 2010. Here AMDAR stands for
Aircraft Meteorological Data Relay being a
standard of automated messages generated
by commercial aircraft during flight. Among
measured background meteorolgical parameters
AMDARs consist information about turbulence in
the form of IT (graded on board accelerometer
reading) and Derived Equivalent Vertical Gust
(DEVG) (ARL, 1985) (for more information see
WMO (2003)). The AMDARs were chosen so
that each contains valid IT and DEVG records
and was generated during cruise flight phase
above 8500m amsl. The last two criteria serve
to eliminate erroneous accelerometer reading
during manouvers and to avoid cloud turbulence
measurements (since no relative humidity reading
was available). The geographical distribution of
the data is illustrated in Fig. 1. Table 1 shows

severity distribution of the observations. The IT
and the DEVG records agree up to 30 cases
of light turbulence (DEVG) or no turbulence (IT)
therefore in the rest of this paper we will use
IT. The background atmospheric profiles were
provided by COAMPS model run operationally
at Interdisciplinary Centre for Mathematical and
Computational Modelling, University of Warsaw.
The horizontal resolution of the forecast is 39km
with 30 vertical levels.

Figure 1: Geographical distribution of the
observation set used for validation

3 Prediction test

The first question one would ask is which interval
∆ is appropriate. Although the intuitive approach
would be choosing a relatively small ∆ since if
the data were precise and the method at hand
would be accurate in predicting turbulence the
smallest reasonable interval would be the optimal
solution. However our background data are
gridded with vertical grid spacing changing with
altitude and localization (terrain following vertical
coordinates). To answer what is the preferred
interval, for each of the 4011 sets of breaking
heights a collection of N∆ indices was calculated
for 180 ∆ intervals equally distributed in the
range (45m, 8995m) and centered at the altitudes
reported in respective AMDARs. As an indicator
of performance of such an index, the area under
the ROC curve (AUC) was used. AUC values
range from 0 to 1 with 0.5 meaning the index
performance is as good as any random measure
(ie. it bears no relevant information), 1 meaning
the criterion is perfect and values lesser than 0.5
mean that the index is indicating inverted values
(that is it bears relevant information but positive



Turbulence intensity Number of observations (IT) Number of observations (DEVG)
NOTURB 3730 3760
LIG 195 165
MOD 17 17
SEV 69 69

Table 1: Number of observations in each turbulence severity class (NO TURBulence, LIGht turbulence,
MODerate turbulence and SEVere turbulence) according to IT and DEVG records

responses correspond to lower values). Since
ROC curves are constructed for binary criteria
we have tested the predictors for detection of
moderate or greater (MOG) turbulence. The

Figure 2: AUC for set of 180 values of ∆ uniformly
distributed in the interval (45m, 8995m) for all data
and separately for each of the three months

results of the monthly validation are illustrated in
Fig. 2. One feature that is quite surprising is
strong temporal variability in displayed prediction
skill - for each month there is at least one
N∆ with AUC ≥ 0.6 but they are characterized
by different interval values. The general skill
distribution is very different for each of the three
studied months. Even greater variability can
be seen in Fig. 3. The other feature which
is also unexpected and is visible in the three
month evaluation is that indices corresponding
to large ∆ (approximately 6000m to 8000m)
display significantly better skill than the ones
corresponding to the lower values. This behaviour
is visible in January and February validations. In
March N∆ characterized by highest AUC mostly
are those with interval around 4900m. In general
for all observations the index with the best skill

Figure 3: AUC for set of 180 values of ∆ uniformly
distributed in the interval (45m, 8995m) for 11 day
periods ranging from 01.01.2010 to 31.03.2010.
The numbers in the legend denote the order of
the periods.

(AUC=0.614) is the one with ∆=7145m.
These results show that this index must be

used with care. The AUC associated with each
N∆ tends to approximately 0.55 (or 0.60 for larger
∆) for longer validation periods. However for
shorter periods (especially see in 11-day periods
verification in Fig. 3) the results vary strongly
but for 5 out of 8 11-day verification periods
AUC ≥ 0.673 and in cases where AUC was
never larger than 0.600 minimum AUC values
were smaller than 0.400. This leads to three
conclusions. First, that in most cases there exists
such interval length ∆ that N∆ bears information
significantly related to the observed turbulence.
Yet, it is not established whether the skill patterns
as functions of ∆ can be forseen, thus rendering
N∆ hard to use operationally. Second, that since
the method originated from the idea that shallow
convection excites the GW the N∆ index may be
meaningless when shallow convection is absent



(which we do not know a priori). Third, that
as a standalone index N∆ is hard to use but it
could be incorporated into predictors using a set
of turbulence indices (e.g. Sharman et al., 2006).

4 Random forest training and
performance analysis

Results shown in Fig. 2 and 3 suggest that
N∆ for different values of ∆ could bear different
information. A question arises whether it is so
and could many N∆ indices be combined into
one index which is more reliable. As a possible
solution for this problem we have used a random
forest algorithm (Breiman, 2001) in the version
ported to the R language (Liaw and Wiener,
2002). As the training period we have chosen
January. There were in total 1416 observations in
that month out of which 1332 were non-turbulent,
51 were light turbulence and 33 MOG turbulence
(including only 3 cases of moderate turbulence
encounters).

Figure 4: Boruta score for set of 180 values of ∆
uniformly distributed in the interval (45m, 8995m)

The outcome we would like to obtain is a
classification of a turbulence encounters into
intensity classes. The best choice would be the
standard four: no turbulence, light turbulence,
moderate turbulence and severe turbulence. Yet
the primary characteristic of January dataset is
extreme lack of balance (this is also true for
other months as shown in Tab. 1). Due to
such distribution we have merged MOD and SEV
classes due to low number of observations in the
MOD class. Therefore our resulting classificator
will have only three distinct CAT intensities:
NOTURB, LIG and MOG (moderate or greater).
Another consequence of strong imbalance in the

dataset is a necessity to handle this issue in
the use of random forest since this method is
sensitive to unbalanced input. Our approach
to the issue of unbalanced classes was in this
case is composing a test set of balanced MOG,
LIG and NOTURB classes. This is done by
sampling the classes. Of course such procedure
implies always choosing very small subset of
NOTURB class that is why one can expect most
of the singular results being biased by this choice.
First of all we have run a model reduction test

Figure 5: ROC curves for GTG (red dashed) and
random forest predictor (black solid). Thin grey
line is no-skill ROC.

in order to find a set of most useful of 180
potentially much correlated variables. To extract
the most important variables (implicitly values
of ∆) we have used Boruta procedure which is
based on random forest algorithm (Kursa and
Rudnicki, 2010). The Boruta algorithm tests a
set of variables and then produces a classification
of variable importance (three values are given:
important, tentative and unimportant). Due to
potential bias by NOTURB representatives we
have repeated the procedure 45 times. Each
time a numeric value has been assigned to
algorithm result (0 - unimportant, 1 - tentative,
2 - important). Overall variable score is a mean
of all 45 runs. The resulting variable importance
classification is presented in Fig. 4. According to
our expectations only small subset of 180 tested
variables was sufficient for prediction. However,
the most imporant variables according to this



(a) (b)
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Figure 6: AUC distribution for tested 600 random forest predictors. 6a shows the test using January
data, 6b using February data and 6c using March data.

method are not the ones with the highest AUC
but rather the ones with somewhat less than
maximal prediction skill. In this way a subset
of 6 variables which have attained score greater
than 1 has been selected. Those variables are
corresponding to ∆ values of 495m, 6745m,
6795m, 7095m and 7145m.

Based on those variables a set of 600 random
forests were trained, each on an individual
balanced training set. Three performance tests
were run on the resulting predictors. First a
control test on January data (minus training set)
to see how the predictor captures potentially
similar data. And two prediction tests using
February and March as test sets. Results of
each of those tests are presented in Fig. 6.
For January AUC is, on average, slightly better
than for individual predictors with mean AUC
equal to 0.552, however there exist predictors with
AUC≥0.75 which is a significant improvement
over individual indices. Fig. 5 shows a

comparison of ROC curves∗ between the best
random forest predictor and NOAA GTG1 which
show that already the method described here
has significant potential. Due to variable skill
of individual N∆ the skill of combined indices
is low so that the distributions for February and
March are centered around 0.500 and 0.515
respectively. Yet, for both months there exist
indices trained in January for which AUC excedes
0.6. A curious feature of random forest predictor
is that the best predictors for March and February
are those which had AUC significantly less than
0.5 (that is they bear relevant information but tend
to invert predicted turbulence class) in January
and the best predictors for January are found
among the ones with AUC much less than 0.5 for
February and March. This phenomenon requires
further investigation but seems to be a promising
feature of the random forest predictors. We

∗The data used for this comparison were obtained from
website http://rtvs.noaa.gov/turb/stats/.



should be able to select a priori the random forest
predictors showing potential for future forecasting
just by taking the ones which have extreme AUC
values in the initial tests.

5 Summary and further development

Based on work the of Haman (1962) we have
introduced a new gravity wave based turbulence
diagnostics N∆. Tests using filtered 3 month
AMDAR data covering Europe have shown that
their performance is not stable. That is, for most
of time periods there exist an interval thickness
∆ for which N∆ has area under ROC curve
for moderate or greater turbulence greater or
equal than 0.67 yet this ∆ changes in a way
that can not be inferred from the described
tests. A possible reason for this behaviour are
a background weather conditions we did not
know to sufficient extent. Because of this N∆

could be used as one of many ingredients of an
ensemble index but not as standalone turbulence
diagnostic due to reasonably good yet unstable
performance. A test of a random forest based
ensemble index consisting of 6 selected N∆

was performed. It showed that although the
resulting predictor inherited much of the chaotic
behaviour, this time we were able to formulate
a condition to asses which among a collection
of ensembles would show future potential for
forecasting based only on a tests conducted using
a fixed training set. It seems that understanding
the behaviour of a collection of N∆ indices is
critical for this problem. We need to understand
their variability and what new information those
diagnostics introduce. This will require more tests
using a bigger dataset. Another way to improve is
tuning the random forest ensembles which show
prospect of becoming a standalone index.
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