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Abstract—Motivated by needs in strategic traffic 

flow management, we study the problem of 

forecasting airport capacity profiles over a full-day 

time horizon. Specifically, we present a case study of 

Atlanta’s Hartsfield-Jackson International Airport 

(KATL), which explores use of 1) convective weather 

presence/absence near the terminal, 2) cloud ceiling 

height, and 3) wind speed as predictors of the total 

airport capacity.  It is shown that terminal-area 

convective weather is a primary cause of capacity 

reduction, and also that low ceilings are a sensitive 

and specific predictor of reduced capacity.  Wind 

speeds are shown to be less specific predictors, but 

nevertheless modulate capacity.  Using these 

analyses, a preliminary predictive model that 

stochastically generates capacity profiles is proposed. 

This model leverages Terminal Aerodrome Forecasts 

of wind and ceilings, as well as convective-weather 

scenarios obtained from an ensemble-forecast-

derived weather simulator, in generating possible 

profiles.  Model-generated forecast profiles for 

Atlanta Hartsfield airport are compared with the 

historical profile for a particular bad-weather day of 

interest, September 26, 2010. 

 

I. INTRODUCTION 

There is a growing need for effective and robust air 
traffic management strategies, as airspace 
congestion grows, airlines are subject to increasing 
financial pressures, and the airspace system 
becomes more complex (e.g., due to the 
integration of unmanned systems), among other 
reasons.  For effective management in the face of 
uncertain weather, these strategies must 

 
 

coordinate and adaptively allocate resources (i.e., 
design traffic management initiatives or TMIs) 
across the National Airspace System (NAS) at a 
full-day look-ahead-time (LAT), to efficiently match 
demand with capacity.  Historically, such strategic 
management of air traffic has largely been done 
manually. Personnel at the Air Traffic Control 
Strategic Command Center (ATCSCC), relevant 
Air Route Traffic Control Centers (ARTCCs), and 
the airlines develop coordinated plans via an early-
morning teleconference, and these plans are 
revised via further periodic teleconferences in 
response to developing congestion- and weather- 
related concerns.  However, as congestion and 
airspace sophistication increases, and financial 
burdens dictate efficiency, there is a growing need 
for decision-support tools and/or automation in 
strategic traffic flow management.  One thrust of 
the NextGen initiative to modernize the U.S. air 
transportation is the development of decision-
support tools for strategic traffic management [1,2]. 
The development of decision-support tools is 
complicated by the significant uncertainty in 
weather evolution and its impact on the NAS at 2 
to 24 hour LATs. 
 Several research and development efforts are 
underway to create decision-support tools for 
strategic traffic management in the face of weather 
uncertainty, which involve government, industry, 
and academic partners. Our team has proposed an 
operational concept and prototype decision-
support tool for strategic traffic flow management, 
which we call Flow Contingency Management 
(FCM) [1].  FCM permits quantitative evaluation 
and design of NAS-wide management plans 
(coordinated TMIs across the NAS), by modeling 
traffic flow dynamics throughout the NAS for 
representative weather-impact futures. 
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 A key challenge in implementing FCM is 
forecasting representative weather-impact futures.  
Specifically, a tool is needed that leverages 
weather forecasts and knowledge of airspace-
system operations, to generate probabilistic futures 
or scenarios of weather-impacted NAS capacities, 
including airspace (Sector) capacities and Airport 
Arrival Rates (AARs) and Airport Departure Rates 
(ADRs).    

The problem of forecasting Sector capacities at 
2 to 24 hour LATs has received quite a bit of 
attention from researchers recently [3-7], with 
several approaches proposed to exploit ensemble 
forecasts in predicting weather-impact futures.  Our 
group is using a stochastic-automaton-based 
methodology as part of the FCM solution [5-7]. 
This approach generates a large number of Sector-
capacity futures with plausible spatial/temporal 
correlations and fine structure, while statistically 
matching probabilistic forecasts derived from 
ensemble forecasts [5,6].  In addition, we have 
introduced a technique for selecting a small 
number of representative weather-impact (Sector 
capacity) scenarios among these potential 
outcomes [7]. 
 The FCM solution also requires forecasting of 
AAR and ADR (or total airport capacity, 
AAR+ADR) trajectories at 2 to 24 hour LATs, at 
major airports throughout the NAS.  Probabilistic 
forecasting of airport capacities at these longer 
LATs has received less attention than Sector-
capacity forecasting (see e.g. [8] for some initial 
efforts), and we are still seeking a generic 
approach for forecasting airport capacity 
(AAR+ADR) at airports.  Our preliminary study in 
this direction [9] pursued a classification-based 
approach to AAR+ADR forecasting that leverages 
wind and cloud-ceiling information in Terminal 
Aerodrome Forecasts (TAFs).  However, this initial 
study does not account for convective weather, nor 
does it directly provide a model for simulating 
AAR+ADR.  In this article, we continue the study of 
airport capacity forecasting, with a particular focus 
on integrating convective and wind/ceiling impacts 
on capacity. The focus of the article is on 
describing a detailed case study of the Hartsfield-
Jackson Atlanta International Airport (KATL).  In 
this case study, we explore whether indicators of 
convective weather as well as high winds and low 
ceilings are good predictors of significant capacity 
reductions from the nominal.  Using the results of 
the case studies, we also briefly discuss a 
preliminary model for AAR+ADR at ATL, and use 
the model to predict airport capacities on a 
particular bad-weather day. 

 The remainder of the article is organized as 
follows.  Section II reviews the literature in airport-
capacity prediction and overviews challenges in 
developing a prediction tool for FCM. In Section III, 
the case study on prediction of capacity 
(AAR+ADR) is described.  In Section IV, we 
present a preliminary model of capacity for KATL, 
and generate AAR+ADR forecast scenarios for a 
day of interest, September 26, 2010, using the 
model.  

II. AIRPORT CAPACITY FORECASTING: 

BACKGROUND AND NEEDS 

Airport capacity is defined as the maximum 
number of operations (arrivals and departures) that 
can be handled by an airport in a given amount of 
time (usually, 15mins, 30mins, or 60mins 
intervals). Loosely the airport capacity can be 
viewed as the inverse of the permissible inter-
operation time [1]. Since airports have been 
identified as one of the major bottlenecks in air 
traffic flow [2], predicting airport capacity at 
strategic LATs is a problem of interest. Several 
causal factors have been identified with respect to 
airport capacity. Specifically, traffic demand, 
runway configuration, and forecast/actual terminal 
area weather (specifically, ceilings and wind) are 
some of the key factors that influence an airport's 
operational capacity. In particular, capacity is 
primarily influenced by the airport’s choice of 
runway configurations, which in turn are chosen 
based on terminal area forecasts and predicted 
demand.  Therefore, existing models for airport 
capacities focus on predicting and/or 
characterizing the influence of runway 
configuration on airport capacity.  

The existing research on airport capacity can 
broadly be classified into two categories. One 
category is geared towards developing models for 
predicting (or suggesting an optimal choice for) 
runway configuration given various influencing 
factors [12,13]. The other category is focused on 
quantifying trade-offs between arrival and 
departure capacity given the operating conditions, 
including the runway configuration [14,15]. The aim 
of the first category is to understand how 
managers in an airport choose a particular runway 
configuration given the data available at the time, 
while the second category is aimed towards 
informing managers about how their operating 
protocols result in the complex tradeoff between 
arrival and departure capacities. These two 
categories are clearly inter-dependent, and both 
need to be considered while developing models for 
airport capacity. Since our focus here is on the first 
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direction (modeling airport capacities), we only 
review the literature in this category. 
We stress here that changing runway 
configurations at an airport is a fairly involved 
process and is usually done at intervals of 3 hours 
or more [13]. Predictions of demand and weather 
are seldom entirely accurate over such time-
horizons, and also configuration-selection may not 
always account for all weather conditions 
impacting the terminal. Therefore, while forecast-
based choices of runway configuration affect 
airport capacity, the realized capacity of an airport 
is also influenced, although to a somewhat lesser 
extent, by the realized weather and demand. Of 
particular note, possible convective weather at a 
terminal may significantly modulate airport 
capacities (e.g., by requiring pauses in airport 
operations) for a given airport configuration.  Thus 
at a strategic time-horizon, it may be a good idea 
to develop a simpler direct prediction model for 
airport capacity using terminal weather forecasts 
and demand forecasts, rather than predicting 
runway configuration intermediately. We also 
believe that convective weather in the terminal 
airspace is another important factor that should be 
included in models for airport capacity. We discuss 
these issues further below. 
 

A. Background: Predicting runway configuration 

As we pointed out earlier, the existing models for 
predicting runway configuration can be broadly 
classified into two groups. One of the groups 
consists of models that predict which runway 
configurations are most likely to be chosen given 
the forecasted operating conditions, while the other 
group consists of decision-support tools to help 
airports choose an optimal runway configuration. 
Human factors play an important role in the 
decision making process that leads a particular 
runway configuration to be chosen over other 
feasible configurations. Both prediction and 
optimization of runway configurations needs to 
account for the human element. 

Much of the literature on runway configuration 
prediction and design is airport-specific.  These 
studies are not included in our review. However, 
there are some papers that seek generic solutions.  
Several of these studies employ machine-learning 
and estimation theory type approaches to develop 
models that predict runway configurations from 
predicted operating conditions (wind direction, 
ceiling, demand, etc). For example, [13] and [16] 
explore discrete-choice models to estimate the 
relationship between influencing factors (like 
terminal area weather and arrival/departure 

demand) and favorability of a particular runway 
configuration. The authors also compare the 
discrete-choice models against a Markovian 
transition process constructed from observed data. 
The discrete - choice model seems to be a very 
good model for shorter time horizons (on the order 
of 3 hours).  
A different approach to the problem of predicting 
runway configuration from forecasted operating 
conditions (demand, time of day, ceiling, wind 
speed etc.) is presented in [15]. Specifically, the 
authors develop a deterministic as well as a 
probabilistic prediction model for runway 
configuration that takes forecasts as its input. In 
their approach, the forecasted winds, ceiling, etc. 
are classified into discrete levels before being used 
as an input to the prediction models. The 
deterministic prediction model, which is simply a 
classification decision tree created from historical 
Airspace Systems Performance Metric (ASPM) 
data, predicts the most likely configuration to be 
chosen, while assuming that the snapshot forecast 
of the operating conditions are accurate. The 
model does not account for uncertainties in the 
forecasts. The probabilistic prediction model, 
overcomes this limitation by predicting a Probability 
Mass Function (PMF) for all possible runway 
configurations for the given forecast. The PMF for 
the runway configuration is created from an 
empirical conditional PMF derived from historical 
ASPM data and the NOAA LAMP forecasts. The 
authors of [15] test the two models for 35 
Operational Evolution Partnership (OEP) airports 
and a 2-hour time horizon and assert that the 
models have reasonable success rates. However, 
in our opinion this assertion is somewhat 
debatable. Nevertheless, the approaches 
discussed in [6], especially the probabilistic 
prediction model, may prove to be a good starting 
point for more sophisticated models for longer 
look-ahead times. 
Among the tools that aim at finding the optimal 
runway configuration is NASA's System Oriented 
Runway Management (SORM) initiative ([17-19]). 
SORM is a high-level management tool that takes 
a holistic approach towards developing runway 
management procedures for strategic and tactical 
time-frames. The article [20] discusses some other 
aspects of planning various runway operations, 
including runway configuration selection, at a high 
level. Some examples of other approaches that try 
to provide implementable runway configurations 
are [12] and [21]. The general theme of these 
works is to define and maximize a throughput 
function for feasible runway configurations, while 
taking into account forecast uncertainty. We stress 



 4 

the decision-support tools based on these 
approaches may not work well at strategic time 
horizon because of the level of uncertainty. 
 

B. Strategic Airport Capacity Forecasting 

Airport capacity forecasts at  shorter time-horizons 
are largely based on runway-configuration 
forecasting [13,15]. At longer time horizons, 
however, uncertainties in weather forecasts may 
be large enough that accurate runway-
configuration forecasts are hard to obtain.  At the 
same time, for strategic decision making, specifics 
about the runway configuration are often 
unimportant: a rough estimate of airport capacity is 
all that is needed for predicting congestion and 
planning management.  Further, translating runway 
configuration to airport capacity is a non-trivial 
task. Therefore, we propose to develop a model 
that predicts capacity directly from forecasts of the 
various influencing factors of airport capacity. 
Some of the most influential factors of airport 
capacity are: meteorological conditions (ceiling 
cover, wind condition, visibility, convective 
weather, etc.), demand, and time-of-day. At a 
strategic time-horizon, the amount of uncertainty in 
the forecasts for meteorological conditions far 
exceeds those in other factors. Therefore our focus 
is on generating capacity trajectories based only 
on the forecasts for meteorological conditions. 

The authors of [8] adopt a similar philosophy in 
developing a model for AAR trajectories using the 
Terminal Aerodrome Forecast (TAF). Specifically, 
for each day the TAF is converted into a time-
series at 15-min intervals. Then, using statistical 
and data mining techniques, the authors classify 
the TAF time-series for the day-of-operation as one 
of some finite number of classifications, based on 
some metric of similarity between TAFs time-series 
for two different days. Once classified, a 
probabilistic AAR trajectory is proposed for the 
day-of-operation. To the best of our knowledge, [8] 
is the only study that attempts to develop a 
predictive model for AAR trajectories from weather 
forecasts at strategic time horizons. However, we 
believe that this effort has some shortcomings.  
First, the approach assumes that historical TAFs 
adequately reflect the possible outcomes of 
weather on the day of interest, and that no further 
information can be gleaned from the TAFs other 
than by comparison with historical days; we believe 
that this is a restrictive assumption.  Second, 
convective weather is not considered. 
 
Our initial study of total capacity (AAR+ADR) 
forecasting using the TAF [9] suggests that 

classification-based prediction may be a promising 
alternative.  Specifically, this study suggests that 
the AAR+ADR during each hour can be classified 
into bins (e.g., nominal, reduced, or highly 
reduced) in terms of categorizations of the 
concurrent cloud ceiling heights, wind speed, and 
wind direction.  The data analyses pursued in [9] 
show that these classifications are predictive of 
capacity.  However, the initial study [9] does not 
posit a model for the capacity, nor does it evaluate 
tradeoffs in selecting categories.  Also, the 
possibility of convective weather is ignored entirely.  
Our work here aims to resolve these deficiencies. 

III. PREDICTING AIRPORT CAPACITY: CASE 

STUDY 

We describe a detailed case study of AAR+ADR 
prediction from concurrent observed weather, for 
KATL.   We note that convective weather and 
wind/ceilings all affect capacity at KATL with 
significant frequency, and hence a predictor that 
integrates these factors is needed.  The aim of this 
case study is 1) to determine whether indicators of 
convective weather, low ceilings, and high winds 
are good predictors of airport capacity reduction; 
and 2) understand the fine structure of the 
dependence between these indicators and 
capacity reduction.  Using the case study, we 
expect to develop a generic modeling methodology 
for airport-capacity prediction at the strategic 
horizon. See Section IV for a preliminary modeling 
effort. 

 
We used data from the Airspace System 

Performance Metrics (ASPM) database to develop 
the KATL case study.  Specifically, historical hourly 
AAR+ADR counts, hourly observed cloud-ceiling 
heights, wind speeds, and wind directions between 
April 1st, 2011, and September 30, 2011 were 
obtained from the “Analysis” GUI of the ASPM 
database and used in our study.  We note that the 
ceiling and wind data originate from METARs 
taken at the terminals, which are tabulated in 
ASPM.  For the case study, we also required 
information on convective weather in the vicinity of 
the terminal.  This information is also contained in 
METAR reports, at hourly or higher frequencies 
(with higher-frequency reporting when weather 
conditions are changing or may impact air traffic, 
such as during convective-weather events).  
Unfortunately, we were not able to extract this 
information from ASPM; instead, we used public 
archived METARs, which are available on several 
web sites (see e.g. [22]).  
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 We conducted four data analyses using the 
weather and capacity data for KATL:  

A) A basic evaluation of capacity reduction 
events for KATL and the role of convective weather 
in causing these reductions; 

B) An evaluation of ceiling heights as a predictor 
of concurrent capacity reduction due to low-ceiling 
conditions. 

C) An evaluation of wind speed and direction as 
a predictor of concurrent capacity reduction due to 
wind impact.  

D) A discussion of additional causes of capacity 
reduction, and the role of capacity classifications in 
predictor accuracy/specificity. 
 

A. Overview of Capacity-Reduction Events 

We are concerned with reductions in capacity 
(AAR+ADR) that may significantly impact traffic 
flow to the airport.  Noting that the maximum hourly 
operations (arrivals+departures) at KATL are 
typically about 185, we label hourly AAR+ADR as 
significantly reduced if it is less than 185.  During 
the six month study window, 117/4392=2.7% of the 
hours had significantly reduced AAR+ADR.  For 
these significantly-reduced hours, AAR+ADR 
ranged from 94 to 185, with a mean of 170 and a 
standard deviation of 16.  We see that most 
significantly-reduced hours were only slightly below 
the maximum traffic threshold, but these typical 
cases are interspersed with some exceptional 
hours with drastically reduced AAR+ADR. 
 
Among the 117 significant reductions, 52 events or 
44% of events are directly attributable to 
convective weather observed at ATL, as specified 
in terminal METARs.  Incidentally, a block of 5 
further events, while not directly connected to 
convection, were caused by high winds following 
convective weather associated with a cold-front 
passage.  The high percentage of capacity 
reductions due to convective weather highlights 
the importance of modeling terminal-area 
convection in forecasting AAR+ADR. 
 

B.  Ceiling Heights and Capacity Reduction 
 

Low cloud ceilings limit usable runway 
configurations and require extra spacing between 
aircraft.  As such, low ceilings are a primary cause 
of airport capacity reduction.  Recent efforts to 
forecast AAR+ADR at strategic LATs have verified 
that cloud ceilings are predictive of capacity 
reduction, and have proposed using forecast 
ceiling profiles from TAFs as predictors of capacity.  
Here, we study further the correlation between low 

ceilings and concurrent AAR+ADR, with a 
particular focus on understanding the sensitivity 
and specificity of low ceilings as a predictor.  To do 
so, we consider hours during which the ceiling (as 
specified in METARs) is below a threshold q, for 
q=200,500, and 1000 ft.  We determine the 
numbers/fractions of these low-ceiling hours that 
do and do not correspond to significant capacity 
reduction.  The results are shown in Table 1. 
 

 
Table 1: Sensitivity and Specificity of Ceilings as a 
Predictor of AAR+ADR Reduction. 
 
Table 1 indicates that low ceilings are indeed a 
sensitive and specific predictor of low AAR+ADR. 
A ceiling threshold of 200ft is perfectly specific, and 
identifies 13% percent of the capacity-reduction 
events.  A threshold of 500ft captures a larger 
fraction of capacity-reduction events, but yield false 
positives at a rate of 0.5%. A 1000ft ceiling 
identifies almost 30% of the capacity-reduction 
events, but does produce false positives at a 
higher rate: This analysis highlights that low ceiling 
heights, as specified by a threshold between 200 
and 500 ft, are relatively sensitive and specific 
predictors of capacity reduction. A higher threshold 
of 1000ft is more sensitive, but does yield a more 
significant probability of error. 
 

C. Wind and Capacity Reduction 

Wind speed and direction are recognized to 
modulate arrival/departure capacity, since they 
modulate runway configurations and required 
spacing among aircraft.  In particular, high winds 
often require use of unfavorable (lower-capacity) 
runway configurations, and also require larger 
inter-aircraft separation. Noting these 
dependences, several recent studies have 
considered forecast wind-speed and direction 
profiles as regressors for airport capacity.  Here, 
we also study whether and how AAR+ADR 
depends on wind speeds and direction, with a 
focus on understanding sensitivity/specificity of 
prediction.  In analogy with the cloud-ceiling 
studies, we study whether wind speed above a 
threshold is predictive of capacity reduction.  
Specifically, for thresholds of 15 and 20 knots, we 
determine the number of corresponding hours that 
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do and do not have significant capacity reduction.  
The results are shown in Table 2 below. 
 

 
Table 2: 

 

Clearly, wind speed is also predictive of airport 
capacity, in the sense that a higher fraction of the 
capacity-reduced hours as compared to non-
reduced hours correspond to high winds.  For 
instance, for a threshold of 15 kts, 14.5% of the 
significant capacity-reduction hours are identified, 
while only 6.2% of the non-reduced hours are 
identified.  However, in absolute terms, wind 
speeds are not very specific predictors of capacity 
reduction.  Specifically, for the hours with wind 
speeds above 15mph, only 17 of these hours had 
capacity reduction, while 268 such hours do not.  
That is, a wind speed above the threshold only has 
odds of 17:268=1:16 of corresponding to a 
capacity-reduction period rather than a non-
reduced period. 
 
Tailwinds and cross-winds significantly impact 
aircraft landing, and hence runway configuration 
selection also depends closely on the wind 
direction.  As such, we might hypothesize that 
capacity reductions also depend on wind direction.  
To test whether there is a dependence, we 
determine the odds of a significant capacity 
reduction compared to no significant capacity 
reduction, for significant-wind hours (>15kts) with 
wind direction in each quadrant (NE, SE, SW, 
NW).  Here are the odds in each case: 

 NE Winds – 1 : 10 

 SE Winds – 1 : 10 

 SW Winds – 1 : 25 

 NW Winds – 1 : 14 
The comparison shows that KATL is especially well 
suited to handle higher winds from the Southwest, 
which is unsurprising since this is the predominant 
wind direction (not only at KATL but throughout 
most of the contiguous United States), and high-
capacity runway configurations are planned for the 
predominant wind direction.  However, even with 
direction-based classification, wind is not a high-
specificity predictor of significant capacity 
reduction: even for wind directions for which 
capacity is most frequently reduced, the odds of a 
capacity reduction during high-wind periods is only 
1:10.  These studies indicate that a capacity-

reduction prediction which uses forecast wind 
direction/speed classification will either have low 
sensitivity or specificity.   
 The weak dependence of capacity reduction on 
wind speed/direction is rather surprising.  Winds 
are well-known to influence runway configurations 
and hence capacities, but do not appear to be 
predictive of reduction.  In fact, a closer look at the 
METAR data shows that significant capacity 
reductions often occur during periods with 
moderate winds (say 10-15 kts) but high wind 
gusts (e.g., greater than 25 or 30 kts), while other 
periods with similar wind speeds but no gusts 
enjoy full or nearly full capacity.  We note that 
TAFs do predict wind gusts, and hence a capacity 
model that uses gust information is appropriate.  
However, both TAFs and METARs present gust 
information at irregular intervals (i.e., when 
needed), and hence some processing of the data 
is needed to permit regression and forecasting.  
We have not done this processing in an initial 
study, but expect to do so in future work.  We also 
note that more work on validating TAF gust 
forecasts is need.  A visual inspection of the 
significant capacity-reduction events suggests that 
lowered capacity also often corresponds to periods 
with changing wind directions, which may 
correspond to intervals where runway 
configurations need to be changed or low-level 
wind-shear is present. 
 
The initial studies on predicting capacity levels 
from wind-speed data indicate that building a 
classifier using only speed/direction data is 
infeasible.  An alternative is to use a regression of 
wind speed for prediction. Unlike a classification-
based approach which will entirely mis-predict the 
capacity with some probability, a regression can 
capture weaker dependencies between the 
regressor (speed) and output (capacity level), 
albeit with some error.  Figure 1 plots the capacity 
vs. wind speed using the full six-month data set, 
and determines a linear regression for the 
relationship.  The regression demonstrates a weak 
negative correlation between the wind speed and 
capacity.  The regression can be used to predict 
capacity from wind speed absent other causes of 
capacity reduction, albeit with significant error. 
 

D.  Other Causes of Capacity Reduction 

Of the 117 hours with significant capacity 
reduction, 82/117=70% are periods with convective 
weather in the terminal area, high winds (>15mph), 
or low ceilings (<500ft).  Of these 82 hours, it is 
worth noting that 9 correspond to both high winds 
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and convective weather.  Meanwhile, if we use 
ceilings of <1000ft as a predictor of capacilty 
reduction, then 95/117=81% of the capacity-
reduction events are captured, again with 9 
overlap events with high wind and convective 
weather. 

 
Figure 1: Linear regression of capacity (AAR+ADR) 
in terms of concurrent wind speed.  A weak negative 
dependence is indicated. 

 
 
We posit that the remaining significant capacity-
reduction hours largely correlate with two 
conditions.  First, they may stem from persistence 
of runway configurations, wherein a lower-capacity 
runway configuration is maintained even after a 
weather-impact event has cleared.  In particular, 
the operators may decide to maintain the 
configuration because there is no need for a higher 
capacity, or because the configuration change may 
cause some disruption to traffic at a time of 
interest.  Second, these unpredicted cases may 
correspond to hidden weather conditions, including 
especially convective weather near but not at the 
terminal, and possibly high/gusty winds above the 
surface.  Several other, less common, reasons that 
a significant capacity reduction is unpredictable 
can also be imagined, including runway 
maintenance, failure or maintenance of radar 
systems, debris on the runway, etc.   
 

IV. PRELIMINARY AIRPORT CAPACITY MODEL 

The data analyses for KATL highlight that 
convective weather, low ceilings, and wind events 
all cause reduction in the airport’s capacity with 
relatively high frequency.  We believe that these 
data analyses provide insight into developing an 
abstract predictive model for the capacity 
(AAR+ADR) of KATL at 2-24 hr LATs, in a manner 
that is naturally extensible to other major airports.  

Here, we put forth an extremely preliminary 
predictive model for KATL’s capacity, and illustrate 
the model’s performance for one historical day 
(September 26, 2010). 
 

 
Figure 2: Overview of the airport capacity 
forecasting approach: TAFs are used to predict 
wind/ceiling effects, while the influence model 
(which uses SREF-based probabilistic forecasts)  

 
The model that we propose generates hourly 
forecasts of the capacity based on forecasts of the 
three regressors considered here: presence/ 
absence of convective weather near the airport, 
low ceilings, and high winds.  The model is 
stochastic: multiple possible capacity profiles or 
scenarios are generated, depending on possible 
(uncertain) futures of weather conditions.  The 
structure of the model is outlined in Figure 2.  In 
our preliminary effort, the wind and ceiling 
forecasts in the TAF are directly used as 
regressors of capacity.  Meanwhile, our proposed 
forecasts for absence/presence of convective 
weather in the terminal area leverage ensemble 
forecast products --- in this work, specifically the 
post-processed convection probability guidance 
product originating from the Short Range 
Ensemble Forecast (SREF).  Rather than using the 
probabilistic forecast directly, however, we 
advocate for using an influence-model simulation 
engine that is parameterized (learned) from the 
probabilistic forecasts (see [5-7]).  This approach 
allows us to rapidly generate many possible spatio-
temporal scenarios of convective weather 
presence/absence in grid squares across a large 
geographic region, with 15-minute resolutions. This 
ensemble of scenarios statistically matches 
probabilistic forecasts at hourly snapshot times, 
while also capturing spatial and temporal 
correlations in the weather.  In our previous work, 
we have used the influence model simulator to 
forecast Sector capacities over LATs of up to 24 
hours.  Here, we propose to use the simulator-
generated trajectories for the grid square (or a few 
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grid squares) over the airport of interest, to indicate 
the presence or absence of convective weather.  
Specifically, each local convective weather 
trajectory (scenario) is combined with the TAF wind 
and ceiling forecasts to construct an airport 
capacity scenario or trajectory. 
   Now that we have described the components 
and logic flow, let us present the preliminary 
airport-capacity model in detail.  We focus 
specifically on developing the model for Atlanta, so 
as to give an explicit numerical presentation of the 
model.  In particular, we propose to generate 
airport-capacity (AAR+ADR) scenarios over a 20 
hour LAT according to the following algorithm: 
 
1) Generate one regional scenario of convective-
weather using the influence model simulator.  
Recall that the scenario captures presence/ 
absence of convection in grid squares across the 
region, during 15 minute intervals over the 20 hr 
LAT.  Track the scenario status for the grid square 
over KATL (see Figure 3), over the 20-hour time 
horizon.   
 

 
Figure 3: The influence model simulator produces 
stochastic spatiotemporal scenarios of convective 
weather presence/absence in grid squares across a 
region of interest (upper plot), which are statistically 
matched to SREF probabilistic forecasts (lower plot).  
The weather in the grid square over KATL is tracked 
for the airport-capacity computation. 

 
 
2) For each simulation hour, count the number   of 
15-minute intervals (0,1,2,3, or 4) with convective 
weather in the KATL grid square.  If the number is 
0, progress on to Step 3.  If not, compute the 
capacity as                      , where 
we recall 162 is the mean capacity under 
convective weather conditions and 212 is the 
mean capacity in good-weather conditions.  That 
is, based on the fraction of time with bad weather, 

a linear average of the nominal and reduced 
capacity is used to determine the capacity 
prediction.  As a slightly more sophisticated 
alternative, the capacity prediction can be chosen 
stochastically, to match the standard deviation in 
the historically-measured capacity in addition to the 
mean; we omit the details.  If some convective 
weather has been predicted (         ) and 
hence the capacity has been set, progress directly 
to Step 5.  
 

3) From the TAF, determine whether or not the 
forecast ceiling is below 500ft.  If yes, set the 
predicted capacity to C=175, which is the mean 
capacity when ceiling are below 500ft; then 
progress directly to Step 5.  If no, progress to Step 
4. Again, we note that a stochastic generator of 
capacity can be used instead, which matches 
historical variability under low-ceiling conditions. 
 
4) From the TAF, determine the forecast wind 
speed.  Use the regression in Figure 1 to 
determine the capacity C. Progress to Step 5.  
Again, a stochastic model that reflects the 
regression error can be used as an alternative. 
 
5) Repeat the capacity computation for a number 
of influence-model-generated convective weather 
scenarios, to generate an ensemble of capacity 
profiles. 
 
We have applied the developed model to generate 
forecast airport-capacity (AAR+ADR) scenarios for 
September 26, 2010.  On this day, a long-duration 
tropically-driven convective weather event 
impacted the Southeastern United States, 
significantly impacting traffic to and from Atlanta 
ARTCC airspace including KATL. Using the 3Z 
SREF, we have built the influence model-based 
simulator for convective weather from 5Z to 22Z on 
September 26

th
 (1AM-6PM EST).  In addition, the 

TAF for the period of interest has been obtained 
from a public archive [22].  The TAF does not 
indicate low ceilings, and indicates wind speeds of 
around 8 knots throughout the day.  The above-
described algorithm has been used to generate 
100 possible capacity profiles or scenarios for 
KATL.  Three randomly-generated scenarios are 
shown along with the historical capacity profile (as 
recorded in the ASPM database) in Figure 4a. 
Also, we have found the 10 scenarios that are 
closest to the historical capacity profile, in a mean-
square-error sense.  Three of these scenarios 
(chosen randomly from the 10) are shown in Figure 
4b. 
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a) 

 
b) 
 
Figure 4: Comparison of the historical capacity 
profile and model simulations of capacity for KATL 
on September 26, 2010. a) The historical capacity 
profile is compared with three randomly-selected 
profiles out of 100 profiles generated by the model. 
b) The historical profile is compared with three of 
the 10 closest profiles (in a mean square sense).  In 
both figures, we note that the historical capacity is 
indicated with a heavier line than the model 
simulations. 

 
We see that the scenarios generated by the 

model capture some salient features of the 
historical capacity profile.  In particular, all of the 
scenarios predict nominal capacities in the early 
part of the day, followed by significant probability of 
capacity reduction later in the day.  The predicted 
nominal and reduced capacities are relatively close 
to those achieved in the historical profile, and 
many of the predictions exhibit temporal 
persistence in capacity reduction as in actuality.  
The scenarios that are closest to the real profile 
also exhibit transitions from high to low capacity, 
as well as capacity minima, at similar times as the 
historical profile. These similarities suggest that the 

modeling approach may be promising for 
predicting capacity profiles at strategic horizons, 
though far more study/refinement of the model is 
needed. We note that the model scenarios do 
exhibit more drastic capacity changes than the 
historical case, perhaps suggesting that the fine 
structure of capacity evolution has not been 
captured in this initial modeling effort. 

 
 Several extensions of the proposed model are 
important to explore.  Perhaps most critically, 
better models for wind impact on capacity, 
including ones that use gust and wind-shear 
information, are needed.  Also, models that capture 
persistence in runway-configuration choices may 
be desirable, but must be developed with care to 
ensure that significant capacity reductions are not 
excluded or delayed.   One more important need is 
to account for uncertainties in the TAFs.  In its 
current conception, the model uses the TAF 
directly as a wind and ceiling predictor.  A model 
that reflects uncertainty in the TAF would instead 
generate possible wind and ceiling profiles from 
the TAF, as a step toward determining the capacity 
profile. 
 

NOTICE 

This work was produced for the U.S. Government 
under Contract DTFAWA-10-C-00080 and is 
subject to Federal Aviation Administration 
Acquisition Management System Clause 3.5-13, 
Rights In Data-General, Alt. III and Alt. IV (Oct. 
1996). 
The contents of this document reflect the views of 
the author and The MITRE Corporation and do not 
necessarily reflect the views of the FAA or the 
DOT. Neither the Federal Aviation Administration 
nor the Department of Transportation makes any 
warranty or guarantee, expressed or implied, 
concerning the content or accuracy of these views. 
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