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1.  INTRODUCTION
*
 

Precipitation has long been one of the most 

important and useful meteorological observations. For 

example, the Tropical Rainfall Measuring Mission 

(TRMM) has been producing a set of high-quality, high-

resolution global (50S–50N) precipitation estimates 

(Huffman et al. 2007) which have been widely used in 

many research areas. Many efforts to assimilate 

precipitation observations have been made. Nudging or 

variational methods have been used to assimilate 

precipitation by modifying the model’s moisture and 

sometimes temperature profiles as well, in order to 

obtain correct short-term precipitation according to the 

model parameterization of rain (e.g., Tsuyuki 1996; 

Davolio and Buzzi 2004; Mesinger et al. 2006). They are 

generally successful in forcing the forecasts of precipita-

tion to be close to the observed precipitation during the 

assimilation, but the models revert to the regular 

forecasts soon after the assimilation of rain ceases, 

presumably because these methods are not an efficient 

way to update the potential vorticity field, which is the 

“master” dynamical variable that primarily determines 

the evolution of the forecast in NWP models. 

Precipitation processes parameterized by the 

model physics are usually very nonlinear. Therefore, it is 

very difficult and problematic to create the linearized 

version of the forward model which is required in the 

4D-Var assimilation (Errico et al. 2007). In addition, the 

highly non-Gaussian distribution of the precipitation 

observations seriously violates the basic assumption of 

normal error statistics. Bauer et al. (2011) reviewed the 

current status of precipitation assimilation and con-

cluded that there are still major difficulties related to (1) 

the moist physical processes in NWP models and their 

linear representation and (2) the non-Gaussianity of 

both precipitation observations and model perturbations. 

We propose to use the EnKF method to address 

these critical issues. First, the EnKF does not require 

linearization of the model, and it should be able to more 

efficiently change the potential vorticity field by allowing 

ensemble members with better precipitation to receive 

higher weights. Second, a general variable transfor-

mation is introduced to solve the problem that precipita-
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tion is highly non-Gaussian. In addition, we also allow 

assimilating zero precipitation observations by using a 

criterion that requires that at least several background 

ensemble members have positive precipitation. In this 

study, observing system simulation experiments 

(OSSEs) are carried out with a simplified atmospheric 

general circulation model in order to examine the 

effectiveness and feasibility of the proposed method. 

2.  METHODOLOGY 

2.1  GAUSSION TRANSFORMATION 

A general transformation algorithm to transform any 

variable   with a known arbitrary distribution into a 

Gaussian variable  trans are defined through the connec-

tion between the two cumulative distribution functions 

(CDFs) of   and  trans: 

  trans   
  [ ( )] , (1) 

where  ( ) stands for the CDF of   (by definition having 

values from 0 to 1), and     is the inverse CDF of a 

normal distribution with zero mean and unit standard 

deviation such as  trans is designed to be. Here, 

    ( )  √       (    ) , (2) 

where       is the inverse error function. The CDF of   

can be determined empirically. In this study, we first run 

the SPEEDY model for 10 years and in order to com-

pute the CDF of precipitation variables at each grid point 

and at each season based on this 10-year model 

climatology. Accordingly, transformations of both 

observation and model precipitation variables are thus 

made in terms of their spatial location and season 

during the assimilation process. This technique is some-

times called “Gaussian anamorphosis” and has been 

also used by Schöniger et al. (2012) in hydrology, 

providing a more comprehensive theoretical explanation. 

2.2  HANDLING ZERO PRECIPITATION 

Figure 1 illustrates how the transformation works for 

the precipitation distribution at an example grid point. 

Using the inverse CDF of normal distribution    , the 

CDF of the original precipitation variable [i.e.,  ( ); Fig. 

1c] is converted back to the transformed variable  trans, 

with the CDF shown in Fig. 1d and the PDF in Fig. 1b. 

Since the precipitation data contain a large portion of 

zero values thus they are not continuous, a special 

treatment of the zero precipitation is needed. In the 

absence of a better solution, a reasonable choice is to 
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assign the middle value of zero-precipitation cumulative 

probability to  ( ). In this example,  ( ) = 0.317, which 

is equal to half of zero precipitation probability (63.4%), 

is assigned for all zero precipitation (solid circles). In this 

way, the zero precipitation in the transformed variable is 

still a delta function in its PDF (Fig. 1b), but it is located 

at the median of the zero precipitation part of the normal 

distribution). We also tested other more sophisticated 

approaches, but their experimental impact in the 

assimilation experiments was no better than that of the 

simple median approach. 

 With our current transformation algorithm handling 

the zero precipitation and an ensemble data assimilation 

system, zero precipitation observations can be naturally 

assimilated. Unlike the traditional precipitation assimila-

tion that tends to discard zero observations, a different 

criterion is used in this study: assimilation is conducted 

at all grid points where at least some members of prior 

ensemble are precipitating (regardless of the observed 

values). This is because if the ensemble spread is zero, 

it is not possible to assimilate precipitation using an 

EnKF. We have chosen in this study is to require that at 

least half of the forecasts have positive precipitation, 

which can controls the assimilation quality (shown later) 

and saves computational time. 

3.  EXPERIMENTAL DESIGN 

We conduct OSSEs using the Simplified Para-

metrizations, primitivE-Equation DYnamics (SPEEDY) 

model (Molteni 2003) coupled with the Local Ensemble 

Transform Kalman Filter (LETKF; Hunt et al. 2007). 

SPEEDY is a simple, computationally efficient, but 

realistic general circulation model. The version of 

SPEEDY model used in this study is run at a T30 

resolution with 7 vertical sigma levels. LETKF is an 

ensemble Kalman filter scheme that performs most of 

the analysis computations in ensemble space and in 

each local domain. When applying the Gaussian 

transformation, the transformation algorithm is included 

in the observation operator of the precipitation variable. 

Besides, the observation errors associated with each 

observation are also transformed. 

The SPEEDY model is first run for a one year spin-

up, arbitrarily denoted year 1981, and then for 10 years, 

from January 1, 1982 to January 1, 1992 forced by the 

climatological sea surface temperature. These 10 years 

of simulation are used to compute the precipitation CDF 

at each grid point and at each season in preparation for 

the Gaussian transformation. The same run in the 

period from January 1, 1982 to January 1, 1983 is also 

regarded as the nature run, or the “truth” in the OSSEs. 

Simulated observations are taken from this nature run 

by adding random noise corresponding to the desig-

nated observation errors. Twenty ensemble members 

are used in our assimilation experiments. Starting from 

January 1, 1982, all experiments are initialized with the 

same initial ensemble created by a random choice of 

model conditions at unrelated time in the nature run. 

Observation data are then assimilated into the model 

with a 6-hour cycle. All experiments are run for 1 year. 

Several experiments are summarized in Table 1. In 

the control run, only the realistically distributed conven-

tional rawinsonde observations are assimilated (“Raobs” 

hereafter). For other experiments, global precipitation 

observations gathered uniformly every 2 by 2 model 

grids points are assimilated to estimate the impact of the 

precipitation assimilation. We denote the main experi-

ment showing the effectiveness of precipitation assimila-

tion as “PP_GT_10mR”, indicating that precipitation (PP) 

is assimilated, that the Gaussian Transformation (GT) is 

performed, and that the criterion requiring at least 10 

members of the ensemble to rain in order to use a 

precipitation observation (10mR) is applied. The 

observation error of precipitation observations in this 

experiment is 20%, which is rather accurate. In 

“PP_GT_10mR_Qonly”, only the specific humidity Q is 

updated during the LETKF assimilation of precipitation 

observations, resembling what conventional “nudging”  

methods do by arbitrarily modifying the moisture field in 

 

Figure 1: The probability density function and 

cumulative distribution function the of (a), (c) the 

original precipitation and (b), (d) the transformed 

precipitation at a grid point near Maryland (38.967N, 

78.75W) in winter season (December – February) 

based on the 10-year nature run. The procedure of the 

Gaussian transformation is from (a) to (c), to (d), and to 

(b) as indicated by the arrows. 



the model. Experiment “PP_noGT_10mR” does not use 

Gaussian transformation; “PP_GT_ObsR” uses the 

traditional criterion that precipitation is only assimilated 

when at least a trace of rain is observed (ObsR > 0.1 

mm 6h
-1

). In addition, “PP_GT_10mR_50%err” and 

“PP_noGT_10mR_50%err” are conducted to test the 

impact of observation accuracy on the precipitation 

assimilation, with much higher precipitation observation 

errors of 50% are used. 

4.  RESULTS 

4.1  EFFECT OF PRECIPITATION ASSIMILATION 

Figure 2a shows the evolution of the global root-

mean-square (RMS) analysis errors (verified against the 

nature run) of the u-winds over one year. Different time 

scales are used to show the spin-up stage in the first 

month and for the remaining 11 months after the spin-up. 

It is clear that when all variables (and therefore the full 

potential vorticity) are modified (PP_GT_10mR; blue line 

in Fig. 2a), the improvement introduced by precipitation 

assimilation is quite large after the first month of spin-up. 

In addition to the LETKF analysis, the 0–5 day global 

RMS forecast errors of u-wind averaged over the last 11 

months (i.e., after the spin-up) are also shown in Fig. 2b. 

It is evident that the improvements last throughout the 5-

day forecasts, so that the effect of precipitation assimila-

tion is not “forgotten” by the model during the forecast, 

as experienced with nudging. In contrast, when only the 

moisture field is modified (PP_GT_10mR_Qonly; orange 

line in Fig. 3a,b), the improvement in both analysis and 

forecasts is much smaller. Besides, the error growth 

rate (i.e., the slope) in PP_GT_10mR_Qonly is close to 

that in Raobs whereas the error growth rate in 

PP_GT_10mR is smaller as compared to the other two 

experiments. We only show the u-wind variable because 

the impacts are remarkably similar for all the model 

variables indicating that the assimilation of precipitation 

approach is indeed able to influence the full dynamical 

evolution of the model and not just the moist thermody-

namics. 

 

Figure 2: The global root-mean-square (a) analysis and (b) forecast errors (verified against the nature run) of u-

winds in experiments Raobs, PP_GT_10nR, and PP_GT_10mR_Qonly. For the analysis errors, the evolution over 

one year is shown. Different time scales are used for the spin-up period (the first month) and the remaining 11 

months. For the forecast errors, the 11-month (after the spin-up) averaged values are shown versus the forecast 

time. 

Table 1:  Design of experiments. 

Experiment Observations Gaussian 
transf. 

Criteria for prcp. 
assimilation 

Obs. error of 
prcp. obs. Raws. Prcp. 

Raobs X     

PP_GT_10mR X X X Prcp. members >=10 20% 

PP_GT_10mR_Qonly X X (only updating Q) X Prcp. members >=10 20% 

PP_noGT_10mR X X  Prcp. members >=10 20% 

PP_GT_ObsR X X X Obs. prcp. > 0.1 mm h
-1

  20% 

PP_GT_10mR_50%err X X X Prcp. members >=10 50% 

PP_noGT_10mR_50%err X X  Prcp. members >=10 50% 

 



The effects of Gaussian transformation (GT) and 

the criterion requiring at least 10 members to rain in 

order to use an observation (10mR) are examined 

assuming accurate precipitation by comparing the 

results of PP_GT_10mR, PP_noGT_10mR, and 

PP_GT_ObsR (Fig. 3). As shown in the figure, during 

the spin-up stage the LETKF analysis without transform-

ing the precipitation variable (PP_noGT_10mR; red line 

in Fig. 3) is worse than that applying Gaussian transfor-

mation. However, with these accurate observations, the 

Gaussian transformation does not make a significant 

difference after the spin-up period. As to the observation 

selection criteria, the 10mR criterion seems to be 

essential in order to have an effective precipitation 

assimilation. The analysis of PP_GT_ObsR (green line 

in Fig. 3) is obviously degraded from PP_GT_10mR. 

Additional sensitivity experiments with different 

minimum numbers (1, 5, and 15 out of 20) of the 

precipitating member in order to pass to the assimilation 

were also conducted. It is concluded (not shown) that 

observations at locations where precipitating members 

are too rare can hurt the analysis, and requiring half (10) 

ensemble members are precipitating would be a proper 

criterion. 

4.2  REGIONAL DEPENDENCE 

To investigate the regional dependence of the 

impact of precipitation assimilation, the RMS errors are 

computed for three regions: the Northern Hemisphere 

extratropics (30–90N; NH), the tropics (30S–30N; TR), 

and the Southern Hemisphere extratropics (30–90S; 

SH). Figure 4 shows the RMS errors of u-wind in 0–5 

day forecasts averaged over the last 11 months for main 

experiments as Fig. 2b, but for each region. It is clear 

that these three regions have distinct characteristics of 

analysis errors, error growth rate, and the impact of 

precipitation assimilation. With only rawinsonde 

observations (Raobs), the analysis (0 hour) in the NH 

region is already very accurate, while the TR analysis is 

less accurate and the SH analysis is the least accurate. 

As a result, the precipitation assimilation only has a 

small effect on the NH region but a large effect on the 

SH region. The effect on the TR region is even smaller, 

which would be explained by different dynamical 

instabilities and precipitation mechanisms between the 

tropical and extratropical regions. During the 5-day fore-

casts, the RMS errors in both NH and SH regions grow 

with similar rate, faster than that in the TR region due to 

the stronger growth rates of mid-latitude baroclinic 

instabilities. It is noted that the improvement by 

precipitation assimilation in the SH region is quite large 

and the difference between modifying all variables and 

only modifying moisture by LETKF is emphasized in this 

region during the later forecasts.  

4.3  SENSITIVITY TO ACCURACY OF THE 

PRECIPITATION OBSERVATIONS 

As mentioned in subsection 4.1, with accurate 

precipitation observations of 20%, the application of the 

Gaussian transformation to the precipitation variable 

has only a minor impact on the LETKF analysis 

accuracy after the spin-up (Fig. 3). However, this is not 

the case with larger precipitation observation errors. 

 

Figure 3: As in Fig. 2(a), but for experiments Raobs, 

PP_GT_10mR, PP_noGT_10mR, and PP_GT_ObsR. 

 

Figure 4: As in Fig. 2(b), but the RMS forecast errors 

are calculated separately for the Northern Hemisphere 

extratropics (30–90N; NH), the tropics (30S–30N; TR), 

and the Southern Hemisphere extratropics (30–90S; 

SH), indicated by different marks on the lines. 



Figure 5 shows the impact of both larger observation 

errors as well as the use of the Gaussian transformation. 

When the observation error of precipitation observations 

are increased from 20% to 50% and the Gaussian 

transformation is used (PP_GT_10mR_50%err vs. 

PP_GT_10mR), the analysis becomes only slightly 

worse (shown as a green line in Fig. 5). However, 

without the Gaussian transformation and with 50% 

errors (PP_noGT_10mR_50%err; red line in Fig. 5), the 

precipitation assimilation fails and hurts the analysis. 

This sensitivity test demonstrates the importance of the 

Gaussian transformation to the practical assimilation of 

precipitation, since a 50% error in precipitation observa-

tions is within a realistic range if they are satellite or 

radar retrieval products. 

5.  CONCLUSIONS 

Past attempts to assimilate precipitation observa-

tions into NWP models have found difficult to improve 

model analyses and, especially, model forecasts. The 

linear representation of moist physical processes 

required in the variational data assimilation and the non-

Gaussianity of both precipitation observations and 

model perturbations are two major problems in 

precipitation assimilation (e.g., Bauer et al. 2011). 

An EnKF does not require linearization of the model, 

thus addressing the first problem. Besides, it is more 

efficient in improving the potential vorticity, which is the 

variable that primarily determines the evolution of the 

forecast in NWP models; therefore, the analysis 

improvements in EnKF would not be so quickly 

“forgotten” in the forecasts. In this study we test these 

ideas with OSSEs of global precipitation assimilation 

with the SPEEDY model and the LETKF. In addition, we 

introduce two important changes in the data assimilation 

procedure that contribute to improving the performance 

of precipitation assimilation. First, we introduce a 

general algorithm to transform the precipitation variable 

into Gaussian distribution based on its climatological 

distribution. To handle the problem that the CDF of 

precipitation is discontinuous at zero, the middle value 

(median) of the zero-precipitation cumulative probability 

is chosen to transform all zero precipitation values. 

Second, we propose a model-background-based crite-

rion in the ensemble data assimilation: precipitation 

observations are assimilated only at grid points where at 

least some members of prior ensemble are precipitating. 

This automatically allows zero precipitation observations 

to be assimilated. 

Results in our simple OSSEs are encouraging. By 

assimilating global precipitation, the globally averaged 

RMS analysis errors of u-winds after the spin-up stage 

are greatly reduced as compared to only assimilating 

rawinsonde observations. The improvement is not 

“forgotten” and remains throughout the entire 5-day 

forecasts. All model variables show similar impacts of 

the precipitation assimilation. The improvement is much 

reduced when only modifying the moisture field by 

precipitation observations as done with nudging. By 

separating the globe into three verification regions, i.e., 

the NH extratropics, the tropics, and the SH extratropics, 

it is shown that the effect of precipitation assimilation is 

larger in the SH region than that in the NH region 

because the NH analyses are already accurate by 

denser rawinsonde stations. The tropical region shows 

the least improvement. 

In addition, sensitivity tests show that applying the 

Gaussian transformation does not large impact on the 

analysis errors when the observation error level of 

precipitation is at an accurate 20% level, but it is very 

beneficial when observation errors are at a much higher 

50% level. The proposed 10mR criterion (assimilating 

precipitation at the location where at least half of the 

members are precipitating) allows using some zero 

precipitation observations, and gives much better results 

than the traditional observation-based criterion that only 

assimilate positive precipitation. 
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