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1. INTRODUCTION 

Aviation operations throughout the 
National Airspace System (NAS) are heavily 
impacted by weather. According to airline-
reported data compiled by the Bureau of 
Transportation Statistics (BTS) at the United 
States Department of Transportation, weather-
related delays made up 39% of total aircraft delay 
minutes and 76% of congestion-related delay 
minutes in 2011.** Based on estimates of direct 
and indirect costs of congestion-related delay to 
passengers, airlines, and other industries 
published in a report by the Joint Economic 
Committee Majority Staff (2008), the total annual 
cost of weather delays exceeds $30 billion. A 
separate report by the Weather-Air Traffic 
Management (ATM) Integration Working Group 
(2007) estimated that as much as two thirds of 
weather delay in the NAS was potentially 
avoidable through improved forecasts, 
procedures, and decision support. 

Significant reduction in avoidable weather 
delays is one of the nine key characteristics of the 
Next Generation Air Transportation System 
(NextGen) as laid out by the Joint Planning and 
Development Office (JPDO) in its NextGen 
Concept of Operations (2010). In particular, 
probabilistic weather forecasts will need to be 
integrated into NextGen decision support tools 
(DSTs) in order to minimize delays while 
maintaining acceptable levels of risk. In many 
cases, traffic managers will no longer be 
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responsible for interpreting weather forecasts 
and predicting the impact on air traffic 
operations. Instead, DSTs will use probabilistic 
decision models to recommend specific ATM 
actions in response to weather and traffic 
scenarios. 

Much attention has been given to the 
development of probabilistic forecasts for use in 
ATM. Approaches include simple empirical 
uncertainty models that build error distributions 
around forecast values based on historical error 
data and ensemble forecast models that 
aggregate the results of multiple component 
models or multiple runs of a single model with 
perturbed inputs to build a probabilistic forecast. 
However, most of the attention has focused 
independently on the uncertainty associated with 
individual forecast dimensions (e.g., wind speed) 
at a single forecast time or, at best, the correlated 
uncertainties between a small number of forecast 
dimensions at a single forecast time. Far less 
often addressed are the correlations in forecast 
uncertainty across forecast times that can be 
important in many aviation applications. At the 
same time, much research and development of 
ATM algorithms and NextGen DSTs assumes that 
forecasts will be presented in such a way that 
include this temporal correlation in uncertainties 
(e.g., Mukherjee, et al, 2009; Provan and Atkins, 
2010). 

Temporal correlation is particularly 
important for forecast products used in strategic 
ATM. Strategic ATM focuses on proactively 
managing traffic levels at constrained NAS 
resources (airports, airspace sectors, key 
navigational fixes, etc.) over planning horizons of 
2 hours or longer. Some strategic ATM initiatives 
can cover planning horizons longer than 8 hours.  

Strategic ATM initiatives assign delays or 
reroutes to flights well before they reach the 
constrained resource so that flights can be 

mailto:cprovan@mosaicatm.com
http://www.rita.dot.gov/bts/help/aviation/html/understanding.html
http://www.rita.dot.gov/bts/help/aviation/html/understanding.html


tactically managed at the resource without risking 
excessive airborne holding of flights, diversions 
(landings at airports other than the planned 
arrival airport), or higher than acceptable 
workloads on air traffic controllers. Most often, 
strategic ATM initiatives are issued in anticipation 
of weather forcing reduced capacity at a NAS 
resource: e.g., fog reducing arrival capacity at an 
airport or thunderstorms preventing use of a 
large section of airspace. 

Because strategic ATM manages capacity 
over a long period of time, cumulative effects 
take on a greater importance. If arrival capacity at 
an airport is significantly reduced over a long 
period of time then any excess delivery of 
demand builds over time. This leads to airborne 
holding or diversions that can cascade through 
time until the constraint lifts and controllers have 
room to recover. Thus the optimal decisions are 
very different when faced, for example, with a 
short-duration weather event that is certain to 
occur but whose timing is uncertain versus a long-
duration weather event that has a relatively low 
probability of occurrence. These two scenarios 
may be indistinguishable in a forecast that does 
not explicitly address temporal correlation. While 
human decision makers have the benefit of being 
able to discuss these events with meteorologists 
to gather such details, an automated ATM DST 
would need to have this information quantified as 
part of any input forecast. 

This paper provides a quantitative 
assessment of the potential benefit of temporal 
correlation models to strategic ATM planning. In 
particular, we focus on the benefit of temporal 
correlation in forecasts for a DST that helps 
decision makers plan ground delay programs 
(GDPs). In order to isolate the benefit of explicitly 
modeling temporal correlations in forecasts, we 
use a simplified model of GDP planning with a 
linear programming optimization formulation 
based on work by Ball, et al (2003). Using this 
optimization model as a stand-in for a GDP 
planning DST, we analyze a range of case studies 
and compare the GDPs planned with and without 
temporal correlation. 

The next section describes current GDP 
planning practices and discusses how this process 

might differ in a NextGen environment. Section 3 
describes the GDP model and optimization 
formulation used in the studies. Section 4 
provides more detail on the study design, and 
section 5 presents the scenarios and analysis 
results. The paper closes with conclusions and 
implications for continuing research and 
development. 

2. PLANNING GROUND DELAY PROGRAMS 

GDPs are a tool that traffic managers 
often use to address weather-related shortages in 
airport arrival capacity. GDPs control arrival 
demand at a single airport by assigning delays to 
flights before they have departed from their 
origin airports. These ground delays, typically 
taken while the plane is at the gate with engines 
off, are significantly less expensive for airlines and 
provide lower workloads and risk levels for air 
traffic controllers than comparable airborne 
delays (Cook, et al, 2004). Passengers also benefit 
by knowing about delays further in advance, 
having cellular phone and wireless internet access 
so that they can modify their post-arrival 
schedule, and often being able to wait out delays 
in more comfortable terminal buildings rather 
than on the aircraft. 

Because flights must be assigned delays 
prior to their departures, GDPs must be planned 
at least 2-3 hours before arrival demand is 
expected to exceed airport capacity in order to 
fully control arrival demand. When capacity 
constraints are caused by weather, this requires 
weather forecasts looking perhaps 6-12 hours 
into the future in order to predict airport arrival 
capacity over the full duration of the weather 
event. At these horizons, forecast uncertainty 
plays a significant role in the effectiveness of a 
GDP. Overestimating the impact of weather on 
capacity means flights will be delayed more than 
necessary at their departure airports, resulting in 
unused capacity at the arrival airport. 
Underestimating the impact means flights will 
arrive at a rate that cannot be supported by the 
airport, resulting in costly airborne holding, 
increased workload and stress for air traffic 
controllers, and potentially very expensive 



diversions to other airports as aircraft fuel 
reserves drop below acceptable levels. 

In current practice, GDPs are planned 
collaboratively by FAA traffic managers, 
meteorologists, and airline representatives. When 
a threat of inclement weather is observed, the 
collaborative parties will typically conduct a 
conference call to discuss the situation. 
Meteorologists provide an overview of current 
weather forecasts, and traffic managers and 
airline representatives determine whether a GDP 
is required and, if so, discuss the parameters that 
will be used for the GDP. While airlines interests 
are given weight in the decision process, the 
ultimate decision lies with an FAA traffic 
management specialist at the Air Traffic Control 
System Command Center (ATCSCC). As the 
conditions evolve and new forecasts are issued, 
programs can be updated or cancelled altogether. 

Uncertainty in weather forecasts and the 
resulting uncertainty in future arrival capacity 
most often force ATCSCC specialists to issue 
conservative GDPs that have a high probability of 
keeping arrival demand below capacity. Flights 
are assigned more ground delay than is necessary 
in order to hedge against the risk of airborne 
holding and diversions. This unnecessary delay 
adds to airline costs and passenger 
inconvenience. 

NextGen DSTs will aim to help reduce 
these unnecessary delays while still hedging 
against the risks of overdelivery by applying 
advanced optimization techniques to turn 
combined traffic and weather data into GDP 
parameters that cause minimal delay while being 
robust to forecast and capacity uncertainty. 
Whereas present day DSTs are primarily focused 
on providing situational awareness to traffic 
managers (scheduled traffic, weather forecasts, 
etc.), NextGen DSTs will move toward providing 
recommended actions. Achieving the dual goals 
of risk mitigation and reduced delay require 
probabilistic weather forecasts that can be used 
to quantify the uncertainty in the corresponding 
capacity predictions. 

Successful integration of weather 
forecasts into NextGen DSTs requires 
coordination between meteorologists developing 

forecast tools and aviation researchers 
developing NextGen DSTs. Some GDP planning 
DSTs are already under development, such as the 
GDP Parameter Selection Model (GPSM) (Cook 
and Wood, 2009 and 2010). For the purposes of 
this study, however, a simple GDP planning model 
provides a clearer illustration of the importance 
of including temporal correlation in the forecast 
uncertainty model. The following section 
describes such a model. 

3. GDP LINEAR PROGRAM FORMULATION 

The key decision that must be made when 
a GDP is issued is the arrival acceptance rate 
(AAR). The AAR is the number of flights that will 
be assigned arrival slots in each 15-minute 
interval during the GDP. Flights are then matched 
to arrival slots using previously agreed upon 
procedures. Each flight is assigned ground delay 
so that it will arrive at its assigned arrival slot 
without needing any airborne holding. 

For this study, we use an aggregate flight 
model as a stand-in for the more complex flight-
specific planning used for actual GDPs. The model 
assigns scheduled arrivals to intervals of fixed 
length (e.g., 15 minutes) based on their scheduled 
time of arrival. For intervals 1 through T, let St be 
the number of scheduled arrivals in interval t. In 
practice, some of these flights might already be in 
the air or be otherwise unable to take a ground 
delay. For our purposes, however, we assume 
that all flights are eligible to be delayed. 

The probabilistic weather forecast is 
represented by a set of N capacity vectors, each 
including a nonnegative integer capacity for each 
time interval. A single vector represents a feasible 
sequence of actual airport arrival capacities 
throughout the time horizon with a specified 
probability of occurrence. The arrival capacity in 
time period t under capacity vector n is 
represented by Ant. The probability of occurrence 
for capacity vector n is pn. 

Flights can be assigned ground delay in 
order to reduce the arrival demand in a given 
time period based. Let yt be the number of flights 
assigned ground delay in order to delay them 



from interval t to interval t+1. xt is the number of 
remaining flights planned to arrive in interval t. 

If the number of flights with planned 
arrival times in an interval exceeds the actual 
arrival capacity during this interval then the 
excess flights must be held in the air in order to 
delay them into the following interval. Note that 
the number of flights that must be assigned 
airborne holding is dependent on which capacity 
vector is observed to occur. Thus, let znt be the 
number of flights required to take airborne 
holding in order to be delayed out of time period 
t and into t+1 under capacity vector n.  

Ground delay and airborne holding costs 
are both assumed to be linear. Define q to be the 
cost ratio between a single interval of airborne 
holding and a single interval of ground delay. 
Because airborne holding is always more 
expensive than ground holding, we assume q > 1. 
We do not model the cost of potential diversions. 

Given the above notation, the GDP 
planning problem can be formulated 
mathematically as an integer linear programming 
(ILP) problem as first described by Ball, et al 
(2003). The goal is to balance the cost of assigned 
ground delays against the costs of airborne 
holding. Because airborne holding is subject to 
the uncertainty described by the probabilistic 
capacity inputs, airborne holding must be 
computed as an expected cost. The ILP 
formulation is given below. 
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 Expression (1) is the cost function. The 

cost unit is the cost of assigning a one-interval 
ground delay to a single flight. The first term in 
the cost function is the sum of the number of 
flights delayed out of each arrival interval by a 
ground delay. The second term is the sum of the 
expected number of flights that must be given 
airborne holding in each interval weighted by cost 
ratio q. 

Expressions (2-4) are the constraints that 
ensure that all variables maintain values that 
correctly model possible real-world outcomes. (2) 
ensures feasibility of the ground holding and 
scheduled arrival counts in each arrival interval by 
setting the sum of the flights assigned to the 
interval (xt) and the flights delayed out of the 
interval (yt) equal to the sum of the arrivals 
originally scheduled in the interval (St) and any 
flights delayed into the interval from the previous 
one (yt-1). (3) similarly ensures feasibility of the 
airborne holding that would occur under each 
possible capacity outcome by setting the number 
of flights assigned airborne holding at the end of 
an interval (znt) to be at least as large as the 
number of flights assigned to arrive in the interval 
(xt) plus any flights held in the air at the end of the 
previous interval (zn,t-1) less the arrival capacity in 
the current interval (Ant). If the arrival capacity is 
less than or equal to the number of assigned 
flights plus those held from the previous interval 
then this constraint will hold with equality. (4) 
ensures that all flight counts are nonnegative 
integer values.  

A key observation by Ball, et al, is that this 
ILP formulation has a dual network structure, 
implying that when all capacity and demand 
parameters have integer values, the problem can 
be solved as a continuous linear program (LP) by 
relaxing the integrality constraints on the 
variables. LPs are a well-studied class of 
optimization problems that can be solved 
efficiently for even very large problem instances 
using pre-packaged LP solver software. For the 
analyses detailed in this paper, the GDP planning 
LP was formulated in Matlab and solved using 
lp_solve, a free, open-source LP/ILP solution 
software package that can be run from Matlab via 
an application programming interface (API).* 
Solution times for all scenarios presented were 
under 5 minutes on a laptop personal computer. 

When solved to optimality, the outputs 
from the model are the number of assigned 
arrivals (xt) in each interval that minimize the 
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defined cost function. The corresponding values 
of the yt and znt variables provide the number of 
arrivals in each interval assigned ground holding 
under the optimal solution and the resulting 
airborne holding at the end of each interval under 
each capacity scenario, respectively. In addition, 
the cost of any feasible arrival assignment can be 
computed by plugging the corresponding xt values 
into the constraints, computing the resulting 
ground delay and airborne holding values, and 
plugging these into the cost function. In this way, 
the cost of two different policies under the same 
set of probabilistic capacity predictions can be 
compared.  

In the case studies presented in section 5, 
15-minute intervals are used. The ratio of 
airborne holding cost to ground delay cost (q) is 
set at 3. 

4. STUDY DESIGN 

The analysis of the impact of temporal 
correlation on GDP planning examines a series of 
case studies. Three primary scenarios were 
developed, each with multiple sub-scenarios, 
representing a range of realistic weather events. 
The scenarios are not modeled on specific 
historical events but are instead designed to 
illustrate various benefit mechanisms. 

In order to isolate and quantify the 
benefit of modeling temporal correlations in 
forecast uncertainty using the model presented in 
the previous section, we make two key 
assumptions. The first assumption is that the 
translation from a probabilistic weather forecast 
to a probabilistic airport capacity prediction has 
already occurred. In practice, this is a nontrivial 
step and a potential source of significant error for 
an actual GDP planning DST. For our purposes, 
however, it is enough to assume that this 
translation has been accurately performed. 

The second assumption is that the 
probabilistic capacity predictions perfectly 
quantify the true uncertainty. Taken together 
with the previous assumption, this implies that 
the probabilistic capacity predictions can be 
treated as a truth model. That is, the set of 
capacity vectors is assumed to include all possible 

capacity outcomes over the planning horizon, and 
the associated probabilities are assumed to be 
the true probabilities of observing each capacity 
scenario given the current weather forecast. 

From a given set of probabilistic capacity 
scenarios representing the truth model, the 
corresponding temporally independent capacity 
model is generated by computing independent 
probability distributions for the capacity in each 
interval. The distribution for an interval t is 
created by setting the probability of observing a 
given capacity k to the sum of the probabilities of 
all capacity scenarios in which the capacity is k in 
interval t. In other words, for random variable At 
representing the capacity in time period t, set: 

𝑃[𝐴𝑡 = 𝑘] =  �𝟏[𝐴𝑛𝑡=𝑘]𝑝𝑛

𝑁

𝑛=1

    ∀𝑡,𝑘, 

where 1[] is the indicator function that takes the 
value 1 when the expression in brackets is true 
and 0 otherwise. 

Under the assumption of temporal 
independence, the probability of observing a 
given sequence of capacities across time periods 
is computed as the product of observing the 
individual time period capacities: 

 
𝑃[(𝐴1,𝐴2, … ,𝐴𝑇) = (𝑘1,𝑘2 , … ,𝑘𝑇)]
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The space of feasible capacity scenarios 

under the assumption of independence is then 
generated by enumerating all combinations of 
feasible capacities across time periods. Note that 
every capacity scenario from the original input 
probabilistic capacity prediction will be included 
in the temporally independent prediction, and 
thus the state space for the temporally 
independent version of the model will be at least 
as large (and typically much larger) than the 
original state space. 

Each scenario studied is modeled twice. 
First, the LP instance for the original set of 
capacity scenarios (the truth model) is solved to 
optimality. The resulting ground delay and 
expected airborne holding costs are recorded. A 



second LP instance is created by generating the 
corresponding temporally independent scenarios. 
This model is solved to optimality to determine 
the policy, in terms of the number of flights 
assigned to each interval, that would be 
computed when the temporal correlation is 
ignored. This policy is then plugged into the truth 
model to compute ground delay, expected 
airborne holding, and total cost. The difference in 
performance between the two policies represents 
the impact of including or excluding the impact of 
temporal correlation in the capacity inputs. 

5. SIMULATED SCENARIOS 

The following subsections describe the 
design and analyze the results of each GDP 
scenario. 

5.1 Scenario 1: Low Ceilings at San Francisco 

This scenario is based on a type of low 
ceiling event that occurs regularly at San 
Francisco International Airport (SFO). Controllers 
at SFO typically use parallel arrival runways for 
simultaneous approaches at a rate of 60 arrivals 
per hour. However, when ceilings drop below 
specified thresholds, arrivals must be condensed 
into a single stream, which drops the arrival rate 
to 30 flights per hour. 

In many cases, SFO begins the day 
operating under low ceilings. If ceilings are not 
expected to lift or burn off by the morning arrival 
push then a GDP is necessary to keep arrival rates 
below the 30 flights per hour threshold. This type 
of event is described in greater detail in Cook and 
Wood (2009). 

Given a particular ceilings clear time, the 
translation to capacity is fairly straightforward in 
this scenario: 30 flights per hour before ceilings 
clear and 60 flights per hour afterward. The 
temporal correlation lies in the knowledge that 
capacities will not bounce around from time 
period to time period; once capacity has 
increased to 60 flights per hour, it will not 
decrease again. When temporal correlation is 
ignored, this will no longer be the case. Some 
capacity scenarios will include inconsistent 

capacity sequences that bounce between 30 and 
60 flights per hour. 

Three probability distributions for the 
ceilings clear time were used to generate three 
sets of capacity scenarios. These distributions are 
shown in Fig. 1. The blue distribution (forecast 1) 
is a unimodal distribution that might be built 
around a single clearing time forecast. The green 
distribution (forecast 2) is a bimodal distribution 
which might be generated from two distinct 

clearing time forecasts. The red distribution 
(forecast 3) takes this bimodal distribution to its 
extreme by only allowing for two possible clearing 
times 3 hours apart from one another. 

Two traffic scenarios were used. The low 
traffic scenario was based on data from October 
1, 2011, and represents a typical 2011 traffic day. 
The high traffic scenario increases traffic in each 
interval by 20% and corresponds roughly with 
2012 traffic levels during this same time period. 

Tables 1 and 2 show the results for the 
low and high traffic scenarios, respectively. For 
each forecast, two columns are shown. The 
column labeled “Optimal” provides results for the 
policy determined by the first optimization that 
uses the true capacity scenarios. The column 
labeled “Independent” provides results for 
second optimization that uses temporally 
independent forecasts. The last row in each table 
provides the optimality gap, computed as the 
percent increase in cost under the assumption of 
temporal independence relative to the cost of the 
true optimal policy. 

Figure 1. Clearing time probabiliy distributions with time 
(GMT) on the horizontal axis and probability of clearing on 
the vertical axis. Distributions are unimodal (blue), bimodal 

(green), and extreme bimodal (red). 



Table 1. Delay and holding comparions for low traffic 
scenario. 

 
 

Table 2. Delay and holding comparions for high traffic 
scenario. 

 
 
The optimality gaps range from 4.6% to 

42%. The unit of the cost function is one flight-
interval of ground delay, or roughly 15 minutes of 
ground delay. Thus, for example, the absolute 
difference in cost of 72 between the optimal and 
independent policies under forecast 2 for the low 
traffic scenario corresponds to the cost of over 
1000 minutes of ground delay. 

In all cases, the independent policy issues 
a smaller amount of ground delay and, as a result, 
significantly higher than expected airborne 
holding. This implies that the programs are more 
aggressive, which is confirmed by the cumulative 
planned arrivals plotted in Fig. 2. The horizontal 
axis is scenario time. The blue line plots the 
cumulative scheduled arrivals over time. The red 
line plots the cumulative planned arrivals after 
issuing ground delays (but before computing 
airborne holding) under the optimal policy. The 
green line plots the cumulative planned arrivals 
when the policy is computed under the 
assumption of temporal independence. Note that 
the cumulative planned arrivals under the 
assumption of temporal independence is often 
higher (and never lower) than the optimal 
planned arrivals. This shows that under the 
assumption of independence, flights are being 
sent at a higher rate than in the optimal policy. 

The decrease in ground delay in each case is 
outweighed by the corresponding increase in 
expected airborne holding under the assumed 
cost ratio of 1:3. 

This bias can be intuitively explained. 
Under the true capacity scenarios, capacity is 
always low up until the clearing time, and thus 
there are high-probability capacity scenarios in 
which the cumulative capacity is very low relative 
to the maximum. When temporal correlations are 
ignored, there will be many scenarios with 
capacities fluctuating between low and high 
values. These scenarios will have cumulative 
capacities that are neither among the highest nor 
the lowest scenarios and will have a high 
aggregate probability of occurrence. As a result, 
an automated DST will see lower risk of capacity 
staying low for a long period of time and will 
recommend releasing flights earlier than under 
the optimal policy. The result is the high amount 
of airborne holding observed.  

5.2 Scenario 2: Short-duration Event of 
Uncertain Timing 

The second case study uses the example 
of a frontal passage that results in a short-term 
drop in arrival capacity. The drop may, for 
example, be due to a line of thunderstorms that 
cause a temporary arrival stoppage or to a 
significant change in wind direction that requires 
a runway configuration change that results in a 
temporary arrival rate of zero. Regardless, the 
pattern is one of operating at maximum capacity 
(60 flights per hour) followed by a 30-minute time 

Figure 2. Cumulative planned arrivals for high traffic 
scenario under forecast 2: scheduled (blue), optimal (red), 

and independent (green). 



period with no arrivals and a return to maximum 
capacity. The timing of this arrival stoppage, 
however, is uncertain. 

Two probability distributions for the 
timing of the drop in capacity were investigated. 
Fig. 3 shows the two distributions. The tight 
distribution (blue) is predicts with high probability 
that the event will occur between 12:30 and 
13:15 with lesser probabilities going 30 minutes 
further in each direction. The wide distribution 
(red) has equal weight on the drop occurring at 
each 15-minute interval between 12:00 and 
13:45. Scheduled traffic was assumed to be at 
near capacity, implying that recovery from the 
drop in capacity would take a relatively long 
period of time. 
 The results for these two distributions are 
summarized in Table 3. The optimality gaps for 
the tight and wide forecast distributions are 9.7% 
and 14%, respectively, corresponding to absolute 
cost differences equivalent to 480 and 945 
minutes of ground delay. In contrast to the SFO 
scenarios in the previous subsection, the 
independent policies are more conservative – 
issuing more ground delay and incurring less 
expected holding – than the optimal policies. And 
in this case the savings in airborne holding are not 
enough to make up for the large increase in 
ground delay. 
 

Table 3. Delay and holding comparisons for short-duration 
event scenarios. 

 
 
As in the previous case, this can be 

explained intuitively. Under the actual capacities, 
there is guaranteed to be only a 30-minute period 
at a zero capacity. Thus the cumulative capacity 
available cannot be less than the maximum 
capacity less 30 minutes of arrival capacity. When 
temporal dependence is ignored, however, there 
is the possibility of being at zero capacity for more 
than 30 minutes. Since each interval is evaluated 
independently, scenarios exist with a zero rate for 
as long as 135 minutes. Thus there is some 
probability that the cumulative capacity is very 
low. The result is that the policy computed under 
the assumption of independence releases arrivals 
more slowly in order to hedge against the risk of 
the low-capacity scenarios – even though such 
scenarios do not exist in the true capacity state 
space. 

5.3 Scenario 3: Long-Duration Event of 
Uncertain Occurrence 

The final scenario investigated is one of a 
long-duration event that may or may not occur. 
This could represent, for example, a blizzard or 
large thunderstorm that may or may not develop 
or that might hit or miss the airport of interest. In 
this case, if the event occurs, it is expected to 
reduce the airport capacity by 50% for a period of 
2 hours. If the event does not occur then airport 
capacity is not impacted. Three probabilities of 
occurrence are modeled: 10%, 50%, and 75%. 
Traffic identical to that in the previous case study 
was used. 

The results for these three scenarios are 
shown in Table 4. Under a 10% probability of 

Figure 3. Probability distribution for zero-capacity start 
time: tight distribution (blue) and wide distribution (red). 



occurrence, neither policy issues a significant 
amount of ground delay, but the optimal policy 
achieves nearly the same level of expected 
airborne holding with half of the issued ground 
delay. The optimality gap is 5.6%, representing 
the cost equivalent of approximately 160 minutes 
of ground delay. 
 

Table 4. Delay and holding comparisons for long-duration 
event scenarios. Column header is probability of 

occurrence. 

 
 

The cases with 50% and 75% probability 
of occurrence are instructive. In both cases, the 
optimal policy is to hedge completely against the 
possibility that the event occurs by issuing enough 
ground delay to ensure that no airborne holding is 
required. When temporal dependence is ignored, 
however, there is a high probability that there will 
be mixed high- and low-capacity intervals, so the 
cumulative capacity is likely to be somewhere 
between the maximum and the minimum. In fact, 
under the assumption of temporal independence, 
it is impossible to distinguish between a long-
duration event of uncertain occurrence and a 
short-duration event of uncertain timing (as 
described in the previous section), even though 
the optimal policies in each case are significantly 
different. The result is that the policy under 
temporal independence releases some arrivals 
early, which creates a high likelihood of airborne 
holding. The optimality gap in both the 50% and 
75% case is nearly 30%. 

6. DISCUSSION AND CONCLUSIONS 

The case studies presented in the 
previous section show that, under a wide range of 
conditions, assuming temporal independence in a 
weather forecast – or, more accurately, in the 
translation of a weather forecast into a 

probabilistic capacity prediction – can significantly 
reduce the efficiency of a strategic ATM planning 
tool. This is due to the cumulative nature of 
strategic ATM initiatives. Capacity reductions over 
a long period of time must be handled differently 
than those over a short period of time. 
Particularly in high-traffic environments, it often 
takes a long time to recover from lost capacity, 
and unexpected airborne holding often can 
cascade through time and impact flights many 
hours after they first occur. 

In present day practice, this is typically 
not an issue. Human decision makers are looking 
at weather forecast tools and consulting with 
meteorologists to build a comprehensive 
understanding of the weather situation before 
they take action. Meteorologists in particular are 
able to describe the risks to these decision makers 
in ways that make clear what is likely to happen 
over time. Is this a long-duration or short-
duration event? Are there meaningful thresholds 
– e.g., a change in wind direction – that can be 
planned against? How likely are various 
scenarios? As a result, human ATM experts are 
able to make decisions that appropriately account 
for risks. 

In the NextGen operational environment, 
however, DSTs will be required to aggregate 
traffic data and automated weather forecast or 
capacity prediction data in order to recommend 
ATM actions that can improve system efficiency. 
An automated DST requires forecast uncertainty 
to be quantified in a meaningful way. This 
includes, in particular, a quantification of 
temporal correlation in the uncertainty around 
capacity predictions. Thus there is significant 
need for coordination between designers of ATM 
DSTs and researchers that are developing new 
forecast products or improving existing products 
in order to determine how this requirements gap 
can be addressed. 

The impact of such a DST when this 
modeling gap is successfully bridged can be 
significant. The GPSM tool discussed previously 
focuses on the problem of planning GDPs at SFO 
under low ceilings – similar to the case studies 
presented in section 5.1. The forecast product 
used to generate capacity estimates focused on 



the threshold event of low ceiling clearing time. 
Thus capacity predictions could be easily 
generated that included the temporal 
dependence of low capacity before clearing and 
high capacity afterward. An operational 
evaluation of the tool over 5 months in 2012 
along with a larger set of simulated results 
suggested that ground delays could be decreased 
by approximately 20% per GDP compared with 
present day operations with negligible increase in 
airborne holding if the GDPs recommended by the 
tool were issued (Cook and Provan, 2013). 

The question of how to provide forecasts 
with temporal correlation is nontrivial. Two 
possible approaches are threshold events and 
ensemble capacity scenarios. Threshold events 
are changes in weather conditions that can be 
directly translated into changes in capacity or 
operations. GPSM operates using ceiling 
thresholds that allow SFO to move from a rate of 
30 arrivals per hour to 60 arrivals per hour. Other 
thresholds might be changes in wind direction or 
wind speed that alter the viability of a runway for 
arrival operations. By forecasting the timing of 
threshold events instead of using a block forecast 
for each hour, the temporal correlation can be 
modeled by predicting capacity before or after 
the event. There may still be uncertainty in the 
capacity of the constrained resource before or 
after the event, but these uncertainties may be 
primarily operational instead of meteorological. 
Thresholds can be difficult to identify precisely, 
however, and they often involve more than just a 
single weather dimension. This can make 
forecasting the timing of these events more 
difficult. 

Ensemble capacity prediction is an 
approach that would use the individual 
component forecasts that are typically aggregated 
into a single component forecast. For physical 
forecast models, the component forecasts often 
consist of many possible evolutions of weather 
conditions based on a range of algorithms or 
starting conditions. The range of outcomes 
represents a reasonable model of uncertainty in 
the forecast. Currently, the component models 
are most often aggregated before being sent to 
operational users. If instead a capacity prediction 

model could work directly with each component 
forecast then the range of predicted capacity 
scenarios associated with the components should 
represent a reasonable model of the range of 
possible capacity outcomes. This would appear to 
be the most promising approach. One key 
difficulty, however, would be the need either to 
distribute the component model outputs, which 
would be a very large amount of data, to a large 
number of users or to define a common set of 
capacity models that can be applied to the 
component forecasts as they are computed. In 
the latter case, it would then be these capacity 
predictions, along with the aggregate forecast 
data, that would be distributed to users. 

Regardless of the approach taken, 
meteorologists and DST designers will need to 
collaborate with each other in order to better 
understand the requirements on both sides and 
to define responsibilities for the various steps 
involved in translating advanced weather 
forecasts into capacity predictions with accurate 
models of uncertainty. Achieving the NextGen 
ATM goals and efficiencies will require greater 
integration of strategic planning, research, and 
development efforts between these two 
communities. 
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