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1. INTRODUCTION

A common approach to quantifying
uncertainty in a forecast is to use ensembles
of numerical weather prediction (NWP)
models. How best to configure NWP
ensembles is an area of active research in the
community (e.g., Eckel and Mass 2005; Fujita
et al. 2007; Clark et al. 2008; Berner et al.
2011; Hacker et al. 2011; Lee et al. 2012a).
Limited computing resources also force
sacrifices to be made in balancing several
considerations, including ensemble size,
model resolution, and domain footprint.

Model error is a key portion of the error
in NWP ensembles, particularly for short-
range forecasts in the atmospheric boundary
layer (ABL) (Stensrud et al. 2000; Fujita et al.
2007; Clark et al. 2008). Types of model error
include uncertainty stemming from lack of
knowledge about the processes that are
being modeled, uncertainty in the values of
model parameters, and scale truncation (a
low-pass filter) associated with discretization
and numerical scheme. Approaches for
representing model error include multi-
model, multi-physics, and stochastic
perturbation ensembles, or combinations
thereof (Eckel and Mass 2005; Hacker et al.
2011).
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When constructing a  multi-physics
ensemble, it is not clear a priori what sets of
physics schemes are best to choose, or how
many members to include. The large number
of available physics options exacerbates this
problem. For instance, for the Weather
Research and Forecasting (WRF) Advanced
Research WRF (ARW) NWP model (Skamarock
et al. 2008), there are hundreds of possible
combinations of physics schemes from which
to choose.

Previous research proposes objective
methods using principal component analysis
to choose, or “down-select,” a smaller subset
of ensemble members that represent the
forecast probability density function (PDF)
nearly as well as the full ensemble (Lee et al.
2012a). A second down-selection method is
K-means cluster analysis, explored in Lee et
al. (2012b). In this study we employ a third
down-selection method, hierarchical cluster
analysis (HCA), which performs comparably to
principal component analysis and K-means
cluster analysis (not shown). The goal of our
ensemble down-selection technique is to
retain the subset of ensemble members that
spans the uncertainty space of the forecast,
while eliminating those members that are
most redundant. We do this because
ensembles are most useful when members
each sample a different portion of the
atmospheric PDF.

In this study we construct a large WRF
multi-physics ensemble, and compare the
performance of the HCA subset ensemble to



that of the full, large ensemble using several
metrics. We also use Bayesian model
averaging (BMA; Raftery et al. 2003, 2005) to
calibrate the forecasts for the full ensemble
and to dress the down-selected subset
ensembles.

We choose to configure a multi-physics
ensemble that uses the same ICs/LBCs to
isolate the effects of model uncertainty for
three reasons. First, as mentioned above,
physics variability is a crucial source of
uncertainty for low-level and short-range
forecasts. Second, it is not clear how any
down-selection approach would be physically
meaningful if it were applied to an ensemble
with only equally likely IC/LBC perturbations,
because = members would then be
exchangeable and statistically
indistinguishable (Fraley et al. 2010). Third,
one of the goals of this study is to define a
small set of physics members for potential
use in a later ensemble that would also
include IC/LBC variability. Thus, we take the
approach that because we are dressing the
ensemble PDF using BMA, it is sufficient to
consider only physics uncertainty here.

We discuss our ensemble configuration
and verification procedures in section 2. In
section 3 we describe the down-selection
procedure with HCA. We present verification
results in section 4, and section 5 summarizes
the study.

2. DATA
2.1 Ensemble configuration

Our 42-member physics ensemble is
created with version 3.3 of the WRF-ARW

model. The two control members we use
(CTL-01 and CTL-02) are Developmental
Testbed Center (DTC) Reference

Configurations for WRF-ARW v3 (Wolff et al.

2009; http://www.dtcenter.org/config/). For
the remaining forty members we use at least
three different options in the ensemble for
each class of physics scheme (i.e,,
microphysics, radiation, land surface, surface
layer, boundary layer, and cumulus schemes),
as detailed in Table 1. Skamarock et al.
(2008) contains details and references for all
the parameterization schemes that we
employ. We use a slightly modified version of
the Mellor-Yamada-Janjic (MYJ) ABL scheme,
asin Lee et al. (2012a).

We initialize the 48-h forecasts every fifth
day at 0000 UTC starting on 1 Dec 2009, and
continuing through Nov 2010, for a total of 18
forecast periods during each season. Table 2
lists all the initialization dates for these
forecasts. We choose to space the forecasts
evenly through time every five days instead
of a more frequent spacing in order to reduce
temporal correlations in consecutive forecast
periods. Even forecast spacing also allows us
to sample synoptic regimes fairly throughout
the year.

The coarse domain uses a horizontal grid
spacing of 36 km, while the one-way nested
fine domain uses 12-km grid spacing. The
geographic area spanned by the domains can
be seen in Fig. 1. While all of our analysis
focuses on the inner 12-km domain, we nest
that domain inside the outer 36-km domain
to reduce interpolation errors from the IC and
LBC data, which we describe further below.
There are 45 full vertical levels in each
simulation, with high vertical resolution in the
lowest 2 km (24 full levels) so that we can
resolve processes in the ABL well. In this
study we use time steps of 90 s and 30 s for
the coarse and fine domains, respectively.
We find such small time steps to be necessary
to preserve model stability on simulation day
1 Dec 2009 because of a small, powerful
vorticity maximum near the Texas Gulf Coast




(not shown) and retain
resolution for consistency.

The LBCs for all 42 members in this study
come from the 0.5°x0.5°-resolution Global
Forecast System (GFS; Environmental
Modeling Center 2003) forecast cycles
initialized at each of the simulation times.
We use sea surface temperature (SST)
analyses from the National Centers for
Environmental Prediction (NCEP) real-time
global 0.083° dataset. We use daily snow
analyses from the National Environmental
Satellite, Data, and Information Service
(NESDIS).

The ICs use the 0-h GFS forecast and are
blended with standard WMO observations to
produce a more accurate initial state. We use
the Obsgrid objective analysis software to
perform this blending. Obsgrid is part of the
WRF modeling system and developed by the
National Center for Atmospheric Research
(NCAR), and uses multiple passes of the
objective analysis scheme to modify the first-
guess field (NCAR Mesoscale & Miscroscale
Meteorology (MMM) Division 2011, chap. 7).
In Obsgrid we use the Cressman objective
analysis scheme, assigning each observation a
distance-weighted flow-dependent radius of
influence (Cressman 1959).

that temporal

2.2 Verification and metrics

We  perform our down-selection,
verification, and analysis on the inner 12-km
domain. This approach excludes the
detrimental impact of boundary artifacts near
the edge of the outer 36-km domain.

We use standard WMO surface and
upper-air observations to verify our WRF
ensemble forecasts. We examine the
forecasts for down-selection and verification
at four lead times: 12 h, 24 h, 36 h, and 48 h,
those times for which standard radiosonde
observations are available (0000 UTC and

1200 UTCQ). We quality control these
observations against the GFS analysis fields
that are interpolated by the WRF Pre-
processing System (WPS), using Obsgrid as
described above.

We divide our year-long forecast dataset
into roughly month-long groups of six
forecast periods each. For each experiment
listed in Table 3 we use one month for
verification, while using the previous one,
two, or three months for training data, so
that we can explore what impact training
period length has on results.

The observations used in this study are
temperature and wind at four levels: the
surface and the mandatory levels of 925 hPa,
850 hPa, and 700 hPa. We choose these
levels because in this study we are primarily
concerned with  factors relevant to
forecasting in the lower troposphere, and in
particular the ABL. Additionally, choosing a
consistent set of mandatory levels serves the
purpose of maximizing the number of usable
sounding observations, while also not
introducing interpolation error into the
observations on which we train the down-
selection techniques and against which we
verify the forecasts. Model predictions are
horizontally and vertically interpolated to the
observation locations. In the horizontal we
use bilinear interpolation from the four
surrounding model grid points, and in the
vertical we use linear interpolation from the
grid points immediately above and below the
verification pressure level, with the natural
log of pressure as our vertical coordinate for
interpolation. We perform verification on
wind direction, wind speed, vector wind
difference, and the zonal (u) and meridional
(v) components of the wind.

The primary verification metric we use is
the continuous ranked probability score
(CRPS). The CRPS is a probabilistic metric,



and assesses both accuracy and sharpness
and is defined as (Wilks 2006):
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probability of the forecast variable being < x
at the space-time location of observation i,
p!(x) is the CDF of the observation o, f is

the forecast value at the time and location of
observation i, and N is the total number of
observations. CRPS is negatively oriented,
with zero representing a perfect score.

To compare the relative performance of
the CRPS between a subset and full
ensemble, we take the ratio CRPSR of the
CRPS for the subset ensemble to that of the
full ensemble:

CRPSRz% (2)
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CRPSR is similar to a skill score, except that a
score higher than 1 represents a worse CRPS
for the subset ensemble compared to the full
ensemble, while a score lower than 1
represents a better CRPS for the subset
ensemble.

Comparing the CRPS of two ensembles
does not directly indicate how similar the
distributions of the two ensembles are,
however. Thus, we use the two-sample
Kolmogorov-Smirnov (K-S) test to assess the
similarity of the empirical cumulative
distribution functions (CDFs) of the full and
down-selected ensembles. The null
hypothesis for the K-S test is that the two
populations of data being compared come
from the same distribution. The two-sample
K-S test statistic finds the greatest absolute
difference between the empirical CDFs of two

populations, n, observations of x, and n,
observations of x, (Wilks 2006):
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The null hypothesis for the two-sample K-
S test is rejected at the 95% confidence level
is (Wilks 2006):
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The two-sample K-S test is computed for
every observation in the verification period
for the various experiments. The percentage
of observations for which the null hypothesis
is not rejected in the verification period
indicates how well the full ensemble and
subset ensemble forecast distributions
match.

2.3 Ensemble calibration

When configuring or evaluating an
ensemble system, effort should be made to
ensure that the ensemble forecasts are
calibrated. If an ensemble is perfectly
calibrated, then the distributions of the
ensemble variance and the ensemble-mean
error variance will match (Grimit and Mass
2007; Kolczynski et al. 2009, 2011). Even
when attempting to account for various
sources of error, however, most ensembles
are still under-dispersive and thus require
calibration (Raftery et al. 2005). By under-
dispersive we mean that the verifying
observations too frequently are outside the
predictive envelope of the ensemble; or
equivalently, the spread of the ensemble is
too small. This is true even for very large
ensembles (Kolczynski et al. 2011). NWP
ensembles must therefore be dressed with
statistical estimates of the true error
distribution via post-processing (Roulston and
Smith 2003).



We use BMA to dress the full ensemble
and all down-selected ensembles. BMA
estimates the weights and parameters for
each ensemble member, and then during a
training period (6, 12, or 18 forecast periods
in this study), these weights and parameters
are trained to best match the observations.
The BMA weights and standard deviations are
then applied to forecasts in a verification
period to create a better ensemble PDF.

We perform calibration with BMA on the
forecasts themselves. We calibrate on the
actual forecasts so that we modify the
forecast PDF itself. We apply BMA to the
temperature and the zonal (u) and meridional
(v) wind component forecasts at each
forecast lead time (12, 24, 36, and 48 h) and
for each level (surface, 925 hPa, 850 hPa, and
700 hPa). Asin Lee et al. (2012a) and Raftery
et al. (2005) we assume a normal distribution
for the temperature. Lee et al. (2012a)
assume a normal distribution for both wind
components separately, but here we assume
a bivariate normal distribution for the wind
components, and perform BMA on the u-
wind and v-wind together at each level and
lead time. As in Lee et al. (2012a) we also
perform a single domain-wide bias correction
and calibration for each variable at each lead
time and level.

3. ENSEMBLE DOWN-SELECTION WITH HCA

The down-selection technique we use is
hierarchical cluster analysis. HCA is used in
several studies to group together similar
members in an NWP ensemble forecast (e.g.,
Legg et al. 2002; Alhamed et al. 2002; Yussouf
et al. 2004; Johnson et al. 2011).

Here we perform down-selection via HCA
on bias-corrected, normalized temperature
errors and normalized vector wind
differences (VWD) over the forecast training

period, combining data from all four forecast
lead times (12, 24, 36, and 48 h) at multiple
levels (surface, 925 hPa, 850 hPa, and 700
hPa). We combine the normalized
temperature errors and VWDs to perform
multivariate down-selection, so that for each
experiment there is a single subset ensemble
chosen for all lead times, levels, and
variables.

In HCA each data vector starts out as a
singleton cluster, and at each step of the
algorithm, the two clusters that are closest to
each other according to some distance metric
are combined. This process continues until all
the data vectors are combined into a single
cluster.

The version of HCA we use is Ward’s
minimum variance method, known more
simply as Ward’s method (Wilks 2006).
Ward’s method combines the two clusters
that have the smallest sum of squares — that
is, the sum of squares of distances between
each point in the cluster and the cluster
centroid. The distance metric d(r,s) that

Ward’s method uses in the MATLAB®
Statistics Toolbox is:
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where || ||, is the Euclidean distance, x, and

JTS are the centroids of clusters r and s, and
n._and n, are the numbers of elements in
clusters r and s. Ward’s method is used
frequently in other studies that employ HCA
(e.g., Alhamed et al. 2002; Yussouf et al.
2004; Johnson et al. 2011). Additionally, we
find that alternate versions of HCA vyield
results that are no better than Ward’s
method (not shown).

To determine the number of clusters
present in the data for each case, we find the
maximum number of clusters for which each



cluster has at least three members. We
choose this clustering criterion to exclude
singleton clusters as not meaningful, and also
so that each cluster will have a single member
that is closest to the centroid. The HCA
subset ensembles are all comprised of the
members that are the nearest to their
respective cluster centroids. A dendrogram
from the DJF experiment is shown in Fig. 2 as
an example visualization of how the
ensemble members cluster. The higher up
the vertical axis (the distance metric from Eq.
5) that two clusters join, the more dissimilar
they are. The colored branches of the
dendrogram represent the ten clusters
determined by HCA for the DJF experiment.
To demonstrate that down-selection
using HCA has value, we also compare HCA to
a random down-selection method. For the
DJF (winter) and JJA (summer) experiments,
we randomly choose ten sets of subset
ensembles for each ensemble size ranging
from 2-15 members (i.e., ten random subset
ensembles of 2 members each, ten random
subset ensembles of 3 members each, etc.).
By examining a range of ensemble sizes we
can also assess whether there is an ensemble
size above which additional members no
longer add forecast skill. We use HCA to
determine single subset ensembles for each
of those ensemble sizes (2-15 members), but
allowed for singleton or two-member clusters
in order to make this comparison. For two-
member clusters both members are
equidistant from the cluster centroid, so in
those cases we randomly choose which
member becomes part of the HCA subset.

4. RESULTS

The HCA clusters that result from the one-
month training experiments are shown in
Table 4, the clusters from the two-month

training experiments are listed in Table 5, and
the clusters from the three-month training
experiments can be seen in Table 6. There
are several insights that can be drawn from
those clustering experiments.

First, members cluster differently in
different seasons. Tables 4-6 show this
clearly, with several identical clusters in the
experiments that share a common month(s)
in the training period. This high degree of
“overlapping” of clusters (i.e., shared clusters)
is seen within each season, though somewhat
more strongly in winter and summer than in
the transition seasons.

In each experiment, every cluster has at
least one physics scheme that is common
among all members of that cluster. The right-
most column of Tables 4-6 indicates whether
the cluster shares the same land surface

scheme (L), boundary layer scheme (B),
cumulus scheme (C), longwave and
shortwave radiation schemes (R),
microphysics scheme (M), or some

combination thereof. For the vast majority of
the clusters in all the experiments, the cluster
shares a common land surface scheme. This
result is unsurprising because there are an
order of magnitude more surface than upper-
air observations in the verification dataset
and roughly 20% more temperature than
wind observations, and also because of the
large effect that the land surface scheme has
on near-surface parameters (Wyngaard 2010;
Warner 2011).

Boundary layer and cumulus
parameterizations generally appear to be of
secondary importance to the clustering. As
can be seen in Tables 4-6, clusters that share
the same microphysics and/or radiation
schemes also all share the same cumulus
scheme in this ensemble, but the converse is
often not true; thus it appears that the
cumulus scheme has greater importance with
regard to determining clusters than do either



the microphysics or radiation schemes, at
least for the region studied here. In this
region, cumulus parameterization schemes
often have a more direct impact on model

temperatures and winds than do
microphysics and  radiation  schemes.
Therefore it makes physical sense that

cumulus schemes would be more relevant for
clustering than microphysics or radiation. It
should be noted, however, that in other
regions, such as the U.S. west coast, for
example, microphysics and radiation schemes
are likely to have a larger impact on surface
variables than cumulus schemes due to the
modeling of marine stratus.

In the summer the clusters tend to share
a cumulus and/or land surface scheme, but
typically not a boundary layer scheme. In the
transition seasons the clusters frequently
share a boundary layer and/or land surface
scheme, but not a cumulus scheme. A
plausible meteorological explanation for this
behavior is that there is more convection
across the 12-km domain (see Fig. 1) in
summer, and in the transition seasons of
spring and autumn the effects of surface
heating are increasing and decreasing,
respectively. In winter there are many
synoptic systems moving across the domain
with forcing strong enough to trigger
convection despite the weak land surface
forcing, and because boundary layer schemes
in WRF-ARW have variable performance in
cold and stable regimes in different regions
(Gilliam and Pleim 2010).

Second, the length of the training period
for clustering and calibration has little impact
on the verification scores, whether the
training period is one, two, or three months
long (Figs. 3, 4, and 5, respectively). In Figs. 3-
5, the CRPSR (Eqg. 2) of the HCA subset to the
full ensemble for each variable changes very
little with training period length (e.g.,

compare the data points for FM from Fig. 3,
JFM from Fig. 4, and DJFM from Fig. 5).

Furthermore, for experiments in which
the training period overlapped, there tends to
be considerable overlap in the members that
comprise the HCA down-selected subset
ensembles (Table 7). The subset membership
overlap occurs because similar or identical
clusters tend to form in experiments with
overlapping training periods (see Tables 4-6).
In other words, when the same cluster is
found in multiple experiments, there is one
ensemble member that is frequently closest
to the centroid of that cluster. Therefore, at
least for this ensemble, a longer training
period, which requires several hours more
computation time for calibration with BMA in
order to dress the ensemble, appears to
confer little if any tangible benefit. As a
result, a one-month training period is
considered to be sufficient and practical. A
training period of about a month for BMA is
similar to the findings of Raftery et al. (2005),
though they use a daily NWP ensemble,
instead of an every-fifth-day ensemble.

Third, across all experiments in all months
and seasons, the HCA subsets have CRPS
values that are within about 4% of the CRPS
values of the full ensemble. This result can be
seen in Figs. 3-5, for the one, two, and three-
month training experiments. Thus, it can be
said that down-selection via HCA is effective
year-round, not just in one particular season.
It is also worth noting that the CRPSR ratios
are marginally closer to 1 for the one-month
training experiments than for the two and
three-month training experiments. That the
one-month training experiments have a
CRPSR that changes least from 1 is likely
caused by training on data that is most similar
to the verification data, compared to the
other experiments with longer training
periods.



Fourth, down-selection using HCA usually
results in better verification scores than if
down-selection is done randomly. We
calculate the CRPSR for both HCA-determined
subsets and the average of ten randomly-
determined subsets (comparing both to the
full ensemble), for ensemble sizes ranging
from two to fifteen members, for both a
winter experiment (DJF) and a summer
experiment (JJA). The advantage of HCA
down-selection over random down-selection
is more pronounced in the winter case, as
seen in Figs. 6 and 7 for 2-m T and 10-m u-
wind, respectively, than it is for the summer
case (Figs. 8 and 9). Yet even in the summer
case the HCA subsets still tend to perform
slightly better than the random subsets.

Fifth, there appears to be little additional
forecast skill gained by increasing ensemble
size beyond roughly 7-10 members. The
CRPSR in Figs. 6-9 all decrease with increasing
ensemble size until about 7-10 members, at
which point the CRPSR remains roughly flat
and approximately 1.0 for larger ensemble
sizes. Because only a few ensemble members
can deliver nearly equivalent forecast
performance as a much larger ensemble, it is
likely that such a large multi-physics
ensemble contains much redundancy in
representing model error.

Sixth, down-selection is more effective for
calibrated ensembles. In Figs. 6-9 the CRPSR
for calibrated ensembles (solid lines) is
smaller (i.e., better) than the CRPSR for
uncalibrated ensembles (dashed lines). Thus,
fewer ensemble members are required to
achieve forecast skill equivalent to that of the
full ensemble when the full and subset
ensembles are both calibrated. Furthermore,
as in Lee et al. (2012a,b), calibration improves
the CRPS by 10-15% at all levels for all
variables and lead times (not shown).

Finally, the two-sample K-S test indicates
that the full and HCA subset ensembles are

generally similar. Table 8 details, for each
experiment and for each lead time-variable
combination, the percentage of observation
locations for which the two-sample K-S test
determined the full and subset ensemble
CDFs to be similar at the 95% confidence
level. For most experiments and lead time-
variable combinations, the full and subset
ensemble CDFs are statistically similar to each
other for 95% or more of the forecast
locations in the verification period. Table 8
only shows K-S test results for surface
variables, but results are similar for above-
surface variables as well.

5. SUMMARY

This study demonstrates the performance
of an ensemble down-selection methodology
using hierarchical cluster analysis on a year-
long, 42-member NWP  multi-physics
ensemble dataset. Training for both the
calibration and down-selection is done over
one, two, and three-month periods, with one
month of forecast data used for verification.
The length of training period is shown to have
little impact on verification results, however,
so it is practical to use a shorter training
period for computational efficiency.

The ensemble members cluster differently
in different seasons, but always share at least
one common physics parameterization
scheme. To account for model uncertainty in
a multi-physics framework, the classes of
physics schemes in which diversity is most
important change with season.

Down-selection with HCA, particularly
after calibration with BMA, is effective year-
round at representing the forecast
distribution of a 42-member multi-physics
ensemble with just 7-10 members. In all
seasons this study demonstrates that
increasing ensemble size beyond about 10



members would simply be gratuitous
computing, and that resources would be
more wisely spent on increasing model
resolution or the size of the model domain.
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TaBLE 1. Physics schemes for the 42-member WRF multiphysics ensemble. Descriptions and
references for schemes are contained in Skamarock et al. (2008).

Longwave Shortwave Land Surface  Boundary
Member Microphysics radiation radiation surface layer layer Cumulus
CTL-01 WSM 5-class RRTM Dudhia Noah MMS5 sim. YSU Kain-Fritsch
CTL-02  Thompson RRTM Dudhia RUC Eta sim. MYJ Grell-Devenyi
10 Thompson RRTM Dudhia Thermal diff. MM5 sim. YSU Kain-Fritsch
11 Morrison  New Goddard New Goddard Thermal diff. MM5 sim. YSU Grell-Devenyi
12 WSM 6-class RRTMG RRTMG Thermal diff. MMS5 sim. YSU NSAS
13 Eta (Ferrier) New Goddard New Goddard Noah MMS5 sim. YSU Kain-Fritsch
14 Thompson RRTMG RRTMG Noah MMS5 sim. YSU Grell-Devenyi
15 Morrison RRTM Dudhia Noah MMS5 sim. YSU NSAS
16 WSM 6-class New Goddard New Goddard Noah MMD5 sim. YSU Kain-Fritsch
17 Eta (Ferrier) RRTM Dudhia RUC MMS5 sim. YSU Grell-Devenyi
18 Thompson New Goddard New Goddard RUC MM5 sim. YSU NSAS
19 Morrison RRTMG RRTMG RUC MMS5 sim. YSU Kain-Fritsch
20 Thompson RRTM Dudhia Thermal diff.  Eta sim. MY)J Kain-Fritsch
21 Morrison  New Goddard New Goddard Thermal diff. Eta sim. MYJ Grell-Devenyi
22 WSM 6-class RRTMG RRTMG Thermal diff. Eta sim. MY)J NSAS
23 Eta (Ferrier) New Goddard New Goddard Noah Eta sim. MY)J Kain-Fritsch
24 Thompson RRTMG RRTMG Noah Eta sim. MYJ Grell-Devenyi
25 Morrison RRTM Dudhia Noah Eta sim. MYJ NSAS
26 WSM 6-class New Goddard New Goddard Noah Eta sim. MYJ Kain-Fritsch
27 Eta (Ferrier) RRTM Dudhia RUC Eta sim. MYJ Grell-Devenyi
28 Thompson New Goddard New Goddard RUC Eta sim. MYJ NSAS
29 Morrison RRTMG RRTMG RUC Eta sim. MYJ Kain-Fritsch
30 Thompson RRTM Dudhia Thermal diff.  MYNN  MYNN-2.5 Kain-Fritsch
31 Morrison  New Goddard New Goddard Thermal diff. =~ MYNN  MYNN-2.5 Grell-Devenyi
32 WSM 6-class RRTMG RRTMG Thermal diff. MYNN MYNN-2.5 NSAS
33 Eta (Ferrier) New Goddard New Goddard Noah MYNN  MYNN-2.5 Kain-Fritsch
34 Thompson RRTMG RRTMG Noah MYNN  MYNN-2.5 Grell-Devenyi
35 Morrison RRTM Dudhia Noah MYNN  MYNN-2.5 NSAS
36 WSM 6-class New Goddard New Goddard Noah MYNN  MYNN-2.5 Kain-Fritsch
37 Eta (Ferrier) RRTM Dudhia RUC MYNN  MYNN-2.5 Grell-Devenyi
38 Thompson New Goddard New Goddard RUC MYNN  MYNN-2.5 NSAS
39 Morrison RRTMG RRTMG RUC MYNN MYNN-2.5 Kain-Fritsch
40 Thompson RRTM Dudhia Thermal diff. Pleim-Xu ACM2 Kain-Fritsch
41 Morrison  New Goddard New Goddard Thermal diff. Pleim-Xu ACM2  Grell-Devenyi
42 WSM 6-class RRTMG RRTMG Thermal diff. Pleim-Xu ACM2 NSAS
43 Eta (Ferrier) New Goddard New Goddard Noah Pleim-Xu ACM2 Kain-Fritsch
44 Thompson RRTMG RRTMG Noah Pleim-Xu ACM2  Grell-Devenyi
45 Morrison RRTM Dudhia Noah Pleim-Xu ACM2 NSAS
46 WSM 6-class New Goddard New Goddard Noah Pleim-Xu ACM2 Kain-Fritsch
47 Eta (Ferrier) RRTM Dudhia RUC Pleim-Xu ACM?2 Grell-Devenyi
48 Thompson New Goddard New Goddard RUC Pleim-Xu ACM2 NSAS
49 Morrison RRTMG RRTMG RUC Pleim-Xu ACM?2 Kain-Fritsch




TABLE 2. Initialization dates for the WRF ensemble from Dec 2009-Nov 2010, in YYYY-MM-DD
format. All forecasts are initialized at 0000 UTC on these dates. Also shown are the “month”-
long blocks of six forecast periods each into which the ensemble dataset is divided.

Winter

Spring

Summer

Autumn

D
2009-12-01
2009-12-06
2009-12-11
2009-12-16
2009-12-21
2009-12-26
J
2009-12-31
2010-01-05
2010-01-10
2010-01-15
2010-01-20
2010-01-25
F
2010-01-30
2010-02-04
2010-02-09
2010-02-14
2010-02-19
2010-02-24

M
2010-03-01
2010-03-06
2010-03-11
2010-03-16
2010-03-21
2010-03-26
A
2010-03-31
2010-04-05
2010-04-10
2010-04-15
2010-04-20
2010-04-25
M
2010-04-30
2010-05-05
2010-05-10
2010-05-15
2010-05-20
2010-05-25

J
2010-06-04
2010-06-09
2010-06-14
2010-06-19
2010-06-24
2010-06-29

J
2010-07-04
2010-07-09
2010-07-14
2010-07-19
2010-07-24
2010-07-29

A
2010-08-03
2010-08-08
2010-08-13
2010-08-18
2010-08-23
2010-08-28

S
2010-09-02
2010-09-07
2010-09-12
2010-09-17
2010-09-22
2010-09-27

o)
2010-10-02
2010-10-07
2010-10-12
2010-10-17
2010-10-22
2010-10-25

N
2010-11-01
2010-11-06
2010-11-11
2010-11-16
2010-11-21
2010-11-26




TaBLE 3. Abbreviations for each experiment conducted in this study, with the corresponding
“month(s)” used for training and verification (see Table 2).

Experiment Name | Training “month(s)” | Verification “month”
DJ Dec Jan
JF Jan Feb
FM Feb Mar
MA Mar Apr
AM Apr May
MJ May Jun
JJ Jun Jul
JA Jul Aug
AS Aug Sep
SO Sep Oct
ON Oct Nov
DJF Dec-Jan Feb

JFM Jan-Feb Mar
FMA Feb-Mar Apr
MAM Mar-Apr May
AMJ Apr-May Jun
MJJ May-Jun Jul
JA Jun-Jul Aug
JAS Jul-Aug Sep
ASO Aug-Sep Oct
SON Sep-Oct Nov
DJFM Dec-Jan-Feb Mar
JEMA Jan-Feb-Mar Apr
FMAM Feb-Mar-Apr May
MAMJ Mar-Apr-May Jun
AMJJ Apr-May-Jun Jul
MJJA May-Jun-Jul Aug
JJAS Jun-Jul-Aug Sep
JASO Jul-Aug-Sep Oct
ASON Aug-Sep-Oct Nov




TaBLE 4. Listing of all the clusters formed throughout the one-month training experiments from
Table 3, the experiments in which those clusters are found, and also what classes of physics
scheme are shared throughout the cluster (L = land surface scheme, B = boundary layer
scheme, C = cumulus scheme, R = radiation schemes, M = microphysics scheme).

Cluster members Experiments Shared

01, 13, 14, 15, 16 DJ JF FM MA AM M) SO ON B

02, 27, 28, 29 DJ JF FM MA AM ON B

10,11, 12 DJ JF FM MA AM M) B

17,18, 19 DJ AM M)

20, 21, 22, 30, 31, 32, 40, 41, 42 | DJ ON

23, 24, 25, 33, 34, 35, 43, 44,45 | DJ

26, 36, 46 DJ JF FM MA

37,38, 39,47, 48,49 DJ AM ON

17,19, 37, 39, 47, 49 JF MA

18, 38, 48 JF MA

20, 21, 30, 31, 40, 41 JE FM MA

22,32, 42 JF FM MA

23, 33,43 JE FM

24,25, 34, 35, 44, 45 JF FM

17,37, 47 FM J)

18, 19, 38, 39, 48, 49 FM

23,24, 25 MA

33, 34, 35, 43, 44, 45 MA

20, 21, 22 AM M

23, 24, 25, 26 AM ON

30, 31, 32,40, 41, 42 AM M) ON

33, 34, 35, 36, 43, 44, 45, 46 AM

02,27, 28 MJ

23,24, 26 MJ

25, 35,45 MJ SO

29, 37, 38, 39, 47,48, 49 MJ SO

33, 34, 36,43, 44, 46 MJ

L I N I I o I o A I i I N N sl I I I I I I I A I i N s N I N s N i N I N

01, 13,16 J) AS

02,21, 27 J) B

10, 19, 20, 29, 30, 39, 40, 49 1)

11, 31, 41 1) L

12,18, 22,28 J)

14, 24, 34, 44 I JA AS L

<L

15, 25, 35, 45 JJ JA AS L

=

23, 26, 33, 36, 43, 46 ) AS L

=

32,38,42,48 J)

01, 13, 16, 23, 26, 33, 36, 43, 46 JA

02,17, 27,37, 47 A

10, 20, 30, 40 JA AS

11, 21, 31, 41 JA AS

12, 22, 32, 42 JA AS

18, 28, 38, 48 JA AS

ojofojo|ojofojo(ojlojo|jo(ojlo|o|o

oo |®|™ 2|2
< EYESEYE4 K<

19, 29, 39, 49 JA

rirr|irr|irr|irirrfiie

02,17, 19, 27, 29, 37, 39, 47, 49 AS

02, 22,27,28 SO B

10,11, 12, 17, 18, 19 SO ON| B

20, 21, 30, 31, 32, 40, 41, 42 SO L

23, 24, 26, 33, 34, 36, 43, 44, 46 SO L




TaBLE 5. Listing of all the clusters formed throughout the two-month training experiments from
Table 3, the experiments in which those clusters are found, and also what classes of physics
scheme are shared throughout the cluster (L = land surface scheme, B = boundary layer
scheme, C = cumulus scheme, R = radiation schemes, M = microphysics scheme).

Cluster Members Experiments Shared

01,13, 14,15, 16 DJF JFIM FMA MAM AMJ SON B

02,27, 28, 29 DJF JFIM FMA MAM AMJ SON B

10, 11, 12 DJF JFIM FMA MAM AMJ B

17,19, 37, 39, 47, 49 DJF

18, 38, 48 DJF

20, 21, 30, 31, 40, 41 DJF JFM FMA

22,32,42 DJF JFM FMA

23,33,43 DJF JFM

24, 25, 34, 35,44, 45 DJF JFM

26, 36, 46 DJF JFM FMA

17,37, 47 JEM FMA

18, 19, 38, 39, 48, 49 JFM FMA

23,24, 25 FMA

33,34, 35,43, 44,45 FMA

17,18, 19 MAM AM)J ASO

los)

20, 21, 22 MAM AM)J

23,24, 25, 26 MAM AM)J

30, 31,32,40,41, 42 MAM AMJ

33,34, 35,36,43,44,45, 46 MAM AM)J SON

37,38,39,47,48, 49 MAM AM)J SON

01,13, 14, 16 MJJ ASO

r\fr-rrr|r\jr)r\r)r)-\irr|rr)ir)eiree

02,27,29,37,39,47,49 MJJ

10, 11,17, 19 MJJ B

12, 18, 22, 28, 38, 48 MJJ C

(@]
e}
<

15, 25, 35, 45 MJJ JJA JAS ASO

20,21, 30, 31, 32,40, 41, 42 MJJ

23,24, 26, 33, 34, 36, 43, 44, 46 MJJ ASO

01, 13, 16, 23, 26, 33, 36, 43, 46 JJA JAS

|l N el I e N I

02,17,27,37,47 JA

10, 19, 20, 29, 30, 39, 40, 49 JA

11, 21,31, 41 JJA JAS ASO

12, 22,32, 42 JJA JAS ASO

14,24, 34, 44 JIA_JAS

o|lololo|lo|lo]o
D[ OO | W | W |
A E9 E4ES

18, 28, 38, 48 JJA JAS

02,17,19, 27, 29, 37, 39, 47, 49 JAS

10, 20, 30, 40 JAS ASO

(@]
e}
<

02,27, 28 ASO

|l N I N i N N il N i N

29,37,38,39,47,48, 49 ASO

10,11, 12,17, 18, 19 SON B

20, 21, 22, 30, 31, 32, 40, 41, 42 SON

—

23,24, 25, 26 SON|L B




TABLE 6. Listing of all the clusters formed throughout the three-month training experiments
from Table 3, the experiments in which those clusters are found, and also what classes of
physics scheme are shared throughout the cluster (L = land surface scheme, B = boundary layer
scheme, C = cumulus scheme, R = radiation schemes, M = microphysics scheme).

Cluster Members Experiments Shared

01,13, 14,15, 16 DIFM JEMA FMAM MAMJ AMJJ ASON

02, 27, 28, 29 DIFM JEMA FMAM MAMJ ASON

10, 11,12 DIFM JEMA FMAM MAMJ AMJJ

17,19, 37, 39, 47, 49 DIFM FMAM

18, 38, 48 DIFM FMAM

20, 21, 30, 31, 40, 41 DIFM JEMA

22,32,42 DIFM JEMA

23,33,43 DIFM JEMA

24, 25, 34, 35,44, 45 DIFM JEMA

26, 36, 46 DIFM JEMA

20, 21, 22, 30, 31, 32, 40, 41, 42 FMAM

23,24, 25, 26, 36, 46 FMAM

33,34, 35,43, 44, 45 FMAM

17,18, 19 MAMJ AMJJ ASON

20,21, 22 MAM)J

loe)

23,24, 25, 26 MAM)J

30, 31,32,40,41, 42 MAM)J

33,34, 35,36,43,44,45, 46 MAMJ

37,38,39,47,48, 49 MAM)J ASON

02,27, 28 AMJJ

20, 30, 40 AMJJ

21,22,31,32,41,42 AMJJ

23,24, 26, 33, 34, 36, 43, 44, 46 AMJJ JASO ASON

25,35,45 AMJJ ASON

29,37,38,39,47,48, 49 AMJJ

01, 13, 16, 23, 26, 36, 36, 43, 46 MJJA JJAS

02,17,19, 27, 29, 37, 39, 47, 49 MJJA JJAS JASO

10, 11, 20, 21, 30, 31, 40, 41 MJJA ASON

12,22,32,42 MJJA JJAS JASO ASON

14, 24,34, 44 MUA JIAS

15, 25, 35, 45 MJJA JJAS JASO

18, 28, 38, 48 MJJA JJAS JASO

10, 20, 30, 40 JJAS JASO

OO0 |0
> |>o|o |2 |o |2
M ENEAEAEGES

11, 21, 31, 41 JJAS JASO

r\irmrrrrrr|rrrprr-\rprrrrr)--\irm-srrr-r)r)r)|eee

loe)

01,13, 14, 16 JASO




TABLE 7. A list of the ensemble members chosen by the HCA method in each experiment
(grouped by verification month).

Experiment (subset) | Subset members

DJ (subset HO8) 11, 14, 19, 29, 39, 40, 44, 46

JF (subset H10) 10, 14, 29, 40, 42, 43, 45, 46, 48, 49
DJF (subset H10) 11, 14, 29, 40, 42, 43, 45, 46, 48, 49
FM (subset H10) 10, 14, 29, 33, 35, 36, 38, 40, 42, 47

JFM (subset H10) 10, 14, 29, 35, 40, 42, 43, 46, 47, 49
DJFM (subset H10) 11, 14, 29, 40, 42, 43, 45, 46, 48, 49

MA (subset H10) 02, 11, 14, 24, 34, 38, 39, 40, 42, 46
FMA (subset H10) 01, 11, 24, 29, 34, 36, 40, 42, 47, 49
JFMA (subset H10) 11, 14, 29, 35, 40, 42, 43, 46, 47, 49

AM (subset HO9) 11, 16, 17, 22, 26, 27, 39, 41, 44
MAM (subset HO9) | 01,02, 11, 19, 21, 24, 34, 39, 41
FMAM (subset HO8) | 01, 02, 11, 26, 41, 44, 48, 49

MJ (subset H10) 02, 10, 16, 19, 21, 23, 30, 33, 45, 49
AMJ (subset H09) 11, 16, 17, 22, 26, 27, 30, 36, 39
MAMIJ (subset HO9) | 01,02, 11, 19, 21, 24, 34, 39, 41

JJ (subset H10) 02,12, 16, 31, 32, 34, 35, 36, 37, 39
MJJ (subset HO7) 16, 18, 19, 35, 40, 46, 49
AMJJ (subset HO9) | 02, 11, 16, 19, 40, 41, 45, 46, 49

JA (subset H09) 16, 17, 31, 32, 34, 35, 38, 39, 40
JJA (subset HO8) 17, 31, 32, 34, 35, 36, 38, 39
MIJJA (subset HO7) 32, 34, 35, 36, 38, 40, 49

AS (subset H09) 16, 17, 31, 32, 34, 35, 36, 38, 40
JAS (subset HO8) 17, 31, 32, 34, 35, 36, 38, 40
JJAS (subset HO8) 19, 31, 32, 34, 35, 36, 38, 40

SO (subset HO7) 16, 17, 27, 35, 40, 46, 49

ASO (subset HO9) 02, 16, 19, 31, 32, 35, 39, 40, 46
JASO (subset HO8) 16, 31, 32, 35, 38, 40, 46, 49

ON (subset HO7) 01, 02, 12, 24, 34, 39, 42
SON (subset HO7) 12, 16, 23, 27, 38, 42, 46
ASON (subset HO8) | 16, 19, 27, 32, 35, 39, 40, 46




TABLE 8. For each experiment listed, the percentage of observations of each lead time—surface variable combination for which the
two-sided Kolmogorov-Smirnov test indicates that the full and subset ensemble distributions are statistically similar.

Experiment | 12-hT 24-hT 36-hT 48-hT 12-hU 24-hU 36-hU 48-hU 12-hV 24-hV 36-hV 48-hV
DJ 100.0 100.0 100.0 99.90 99.86 99.62 99.93 99.65 99.93 99.85 99.93 99.93
JF 100.0 99.95 100.0 100.0 99.58 99.85 99.78 99.06 99.37 99.71 99.78 99.39
FM 100.0 100.0 100.0 100.0 100.0 99.93 99.93 9993 100.0 100.0 100.0 99.93
MA 100.0 100.0 100.0 99.95 100.0 99.93 99.92 100.0 100.0 99.93 99.69 100.0
AM 100.0 99.90 99.95 99.85 100.0 99.62 99.85 99.92 99.80 99.77 99.93 99.85
mJ 99.95 99.81 9995 9994 99.80 100.0 99.78 99.74 100.0 99.93 99.35 99.91
J 99.71 99.90 9995 99.75 98.26 98.77 99.08 99.42 97.70 97.55 99.54 98.54
JA 99.81 99.90 1000 9990 97.71 98.12 98.79 99.54 96.60 98.74 99.27 99.27
AS 99.47 99.22 99.65 1000 94.15 9853 98.23 9899 9535 98.05 98.36 98.99
SO 99.86 99.86 99.37 99.66 99.93 99.67 99.36 100.0 99.86 99.93 99.29 99.47
ON 100.0 99.95 99.95 99.85 99.74 99.87 99.87 99.74 99.80 99.74 99.81 99.80
DJF 100.0 100.0 100.0 100.0 99.86 99.71 99.34 9899 99.23 99.78 99.56 99.60

JFM 100.0 100.0 100.0 100.0 99.58 99.87 99.67 99.87 99.93 99.67 99.87 99.80
FMA 100.0 100.0 100.0 100.0 100.0 100.0 99.92 100.0 99.91 99.93 99.77 100.0
MAM 99.95 98.67 99.66 99.03 9933 99.62 99.13 99.69 9946 99.77 99.42 99.23
AMIJ 99.95 99.71 99.71 99.63 99.73 99.60 99.56 99.57 99.67 99.80 99.93 99.74
Ml 99.56 98.97 9995 99.26 98.75 99.11 99.08 98.54 97.77 98.77 99.08 98.47
JA 97.49 9956 98.03 99.85 85.08 8996 9156 97.62 8272 90.31 93.70 92.65
JAS 99.19 98.79 9841 99.37 86.24 93.72 9391 95.84 88.16 94.56 95,55 96.38
ASO 99.95 100.0 100.0 100.0 99.50 99.93 99.79 100.0 99.79 100.0 99.43 99.93
SON 99.18 99.75 99.37 9897 99.22 99.22 99.03 99.34 99.28 98.89 99.16 98.88
DJFM 100.0 100.0 100.0 100.0 97.97 99.54 99.40 99.67 99.09 9941 99.67 99.60
JFMA 99.94 100.0 100.0 100.0 99.73 99.86 99.85 99.79 99.91 99.93 99.54 99.71
FMAM 100.0 100.0 100.0 99.90 99.80 99.92 99.93 99.85 99.87 99.92 99.56 99.69
MAMJ 98.94 96.99 98.27 9841 98.73 9814 99.20 99.32 98.80 99.20 98.77 99.32
AMJJ 99.95 99.61 9990 99.85 9944 99.73 9954 99.56 99.58 99.86 99.68 99.49
MJJA 98.12 9854 98.03 99.17 89.52 91.70 93,50 95.10 89.87 92.12 94.84 9451
JJIAS 99.09 99.18 9831 99.13 87.03 94.21 99.39 96.45 87.03 94.21 99.39 96.45
JASO 99.95 99.04 99.57 99.22 9599 9741 9787 9854 97.14 97.61 99.01 97.16
ASON 100.0 99.90 99.81 9990 99.67 99.74 99.68 99.80 99.74 99.67 99.87 99.47
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FiG. 1. WRF domains used in this study. The outer domain has a 36-km horizontal resolution,

and the inner domain (outlined in red) has a 12-km horizontal resolution.
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Fig. 2. HCA dendrogram illustrating how the ensemble groups into ten clusters for the DJF
experiment. The colored branches of the dendrogram are the ten clusters determined by HCA
for this experiment. The vertical axis is the distance metric from Eqg. 5.
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Fic. 3. Ratios of CRPS for HCA subset ensembles to the CRPS of the full 42-member ensemble,
averaged over all forecast lead times for 10-m U (blue line), 10-m V (red line), and 2-m T (green
line) over all one-month training experiments. These ratios are calculated for BMA-calibrated

ensembles.
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Fig. 4. Ratios of CRPS for HCA subset ensembles to the CRPS of the full 42-member ensemble,
averaged over all forecast lead times for 10-m U (blue line), 10-m V (red line), and 2-m T (green
line) over all two-month training experiments. These ratios are calculated for BMA-calibrated

ensembles.



CRPS Ratio (HCA subset : Full ensemble)
Three-month training experiments

==10-mU =@=10-mV 2-mT
1.10
1.05
o
B
&
« 1.00
&
z ——
0.95
0,90 T T T T T T T T 1
DJFM JFMA FMAM MAMJ AMJJ MJJA JIAS JASO ASON
Experiment

Fic. 5. Ratios of CRPS for HCA subset ensembles to the CRPS of the full 42-member ensemble,
averaged over all forecast lead times for 10-m U (blue line), 10-m V (red line), and 2-m T (green
line) over all three-month training experiments. These ratios are calculated for BMA-calibrated

ensembles.
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Fig. 6. Ratios of CRPS for subset ensembles of a range of sizes to the CRPS of the full 42-
member ensemble, averaged over all forecast lead times for 2-m T in the DJF experiment. The
blue line corresponds to the average CRPS ratio for ten random subset ensembles of each
ensemble size, while the red line is for the CRPS ratio of HCA-determined subset ensembles.
The dashed lines are the ratios for the uncalibrated (equal-weighted) ensembles, while the solid
lines are the ratios for the calibrated (BMA-weighted) ensembles.
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Fig. 7. Ratios of CRPS for subset ensembles of a range of sizes to the CRPS of the full 42-
member ensemble, averaged over all forecast lead times for 10-m U in the DJF experiment. The
blue line corresponds to the average CRPS ratio for ten random subset ensembles of each
ensemble size, while the red line is for the CRPS ratio of HCA-determined subset ensembles.
The dashed lines are the ratios for the uncalibrated (equal-weighted) ensembles, while the solid
lines are the ratios for the calibrated (BMA-weighted) ensembles.
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Fig. 8. Ratios of CRPS for subset ensembles of a range of sizes to the CRPS of the full 42-
member ensemble, averaged over all forecast lead times for 2-m T in the JJA experiment. The
blue line corresponds to the average CRPS ratio for ten random subset ensembles of each
ensemble size, while the red line is for the CRPS ratio of HCA-determined subset ensembles.
The dashed lines are the ratios for the uncalibrated (equal-weighted) ensembles, while the solid
lines are the ratios for the calibrated (BMA-weighted) ensembles.
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Fig. 9. Ratios of CRPS for subset ensembles of a range of sizes to the CRPS of the full 42-
member ensemble, averaged over all forecast lead times for 10-m U in the JJA experiment. The
blue line corresponds to the average CRPS ratio for ten random subset ensembles of each
ensemble size, while the red line is for the CRPS ratio of HCA-determined subset ensembles.
The dashed lines are the ratios for the uncalibrated (equal-weighted) ensembles, while the solid
lines are the ratios for the calibrated (BMA-weighted) ensembles.



