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1.  INTRODUCTION 
  
  It’s easy to think of contributions of statistics to 
hydrometeorological forecasting; statistics are 
embedded in the professional lives of all scientists and 
forecasters.  However, we probably don’t fully 
appreciate the degree of contribution, but pick a paper 
in a journal of the AMS and note whether or not 
statistics are used.  Of course, the boundary between 
statistics and other branches of mathematics is not 
clean, as with the boundary between some other 
sciences.  Wilks (2011) quotes, “Statistics is the 
discipline concerned with the study of variability, with 
the study of uncertainly, and with the study of decision-
making in the face of uncertainty (Lindsay et al. 2004).” 
 
 Statistics as a subject has been around essentially 
forever in mankind’s lives, but like other sciences 
underwent formal development in the last few centuries.  
Early achievements, such as those surrounding the 
Gaussain distribution and Bayes theorem are the 
cornerstones of so much in modern statistics.  Our 
prediction capabilities have advanced tremendously in 
the past century, especially in the last 60 years with 
Numerical Weather Prediction (NWP), capabilities that 
have married statistics with other sciences including 
physics, mathematics, and chemistry.  This subject 
could, and does, fill books.   
 
 The theme of this annual meeting is “Taking 
Predictions to the Next Level:  Expanding Beyond 
Today’s Weather, Water, and Climate Forecasting and 
Projections.”  This is an especially appropriate time to 
consider the contributions of statistics because several 
international organizations have declared 2013 as the 
International Year of Statistics (Statistics 2013) 
(http://www.statistics2013.org/about-us/). I will mention 
only a few of the major contributions of statistics, and 
then discuss probabilistic forecasting and decision 
making, as I view them as major ways statistics can 
help in moving toward the conference goal. 
 
2.   CONTRIBUTIONS OF STATISTICS TO 
      FORECASTING 
 
 Forecasting in the United States dates back to 
about the time the U.S. weather service was formed as 
a duty of the Signal Service in 1870.  Observations were 
scarce, but were analyzed, and members of the Signal 

Service and later the U.S. Weather Bureau manually 
issued forecasts.  Even then, patterns were deduced 
and used in making the forecasts.  For instance in 1910, 
Weather Bureau Chief Willis Moore (1910) stated, “ . . . 
forecasts of a week or 10 days in advance have been 
issued from time to time when certain well defined  
weather types were shown by reports from selected 
stations throughout the Northern Hemisphere.”  Such 
patterns were, of course, statistically determined. 
 
2.1  Objective Forecasting 
 
 Allen and Vernon in the Compendium of 
Meteorology (1951) defined objective forecasting as “. . . 
a forecast which does not depend for its accuracy upon 
the forecasting experience or subjective judgment of the 
meteorologist using it.”  Even earlier, Gringorten (1949) 
had described an objective forecast as one that “. . . is 
made without recourse to the personal judgment of the 
forecaster.”  It is in that publication that he defined 
“predictor” and “predictand,” likely the first use of those 
terms.  Of necessity, the first such methods were 
graphical or some other method of showing relation-
ships, scatter diagrams and histograms being examples.  
Such techniques hit their stride in the 1950's, and the 
Monthly Weather Review has numerous examples, such 
as the classics by Vernon (1947) and Thompson (1950). 
 
2.1.1  The Classical Era  
 
 Shortly thereafter, digital computers arrived, and 
tremendously expanded the horizon for such work.  Two 
main centers of activity for early statistical forecasting 
were the Travelers Research Center (TRC) and the Air 
Force Cambridge Research Laboratory (AFCRL).  For 
example, at AFCRL, Iver Lund (1955) and Irving 
Gringorten (1950) were investigating methods of 
objective weather prediction.  Their methods were right 
at the cusp of digital computer arrival, and were 
generally based on rather small amounts of data. TRC 
had government contracts, and could process large 
quantities of data, albeit they were on low density 
magnetic tapes.  Bob Miller (1962) brought multiple 
discriminant analysis (MDA) and multiple regression into 
the meteorological world, including Bob’s attaching the 
name REEP (Regression Estimation of Event 
Probabilities) to regression with binary predictands 
(Miller 1958). 
 
 Much of the TRC work was using the “classical” 
technique where the prediction was based only on past 
observations.  Being done on aviation-related contracts, 
the studies were heavily oriented toward predicting the 
probability of each of several categories of ceiling height 
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and visibility.  The contributions of the TRC and AFCRL 
work were mainly in the popularizing of statistical 
prediction and the specific techniques brought into the 
meteorological literature.  None of the results of specific 
studies were implemented into main-stream forecasting, 
but rather they furnished the foundation of the statistical 
work that was to grow in the Weather Bureau. 
       
2.1.2  The Perfect Prog Era 
 
 While observations, or analyses of observations, 
are quite useful for what used to be called short range 
(which now may be more appropriately termed 
nowcasting) and are indispensable for projections of an 
hour or so, it was quite apparent that longer range 
forecasts would need NWP.  But NWP wasn’t producing 
“street level” weather, or even “county size” weather 
above the surface.  As a result, when operational NWP 
results were judged good enough to be useful in 
prediction, Bill Klein et al.(1967) and others substituted 
the NWP upper air predictions in multiple regression 
equations to predict maximum and minimum 
temperature at cities where observations existed.  This 
not only brought the forecasts down to the ground, but 
they also  applied to specific locations.  This so-called 
“perfect prog” technique was used first in the Extended 
Forecast Section of the Weather Bureau in formulating 
their official forecasts.  Later, the results were directly 
distributed to Weather Bureau forecasters and others 
who received the teletypewriter bulletins.  The first such 
transmissions, called experimental because the 
forecasts had not been evaluated by forecasters, started 
September 17, 1968 (WB 1968a).  An improved 
operational product replaced the subjectively-derived 
one on March 18, 1970 (WB 1970).  Now, statistics 
were playing a major role in weather forecasting for the 
United States. 
 
 Early studies with this technique were also being 
conducted in Canada (e.g., Yacowar 1968).  Also, 
considerable work was being done at the National 
Hurricane Center in predicting the tracks and intensity of 
hurricanes by regression methods (e.g., Neuman 1979);  
work along these lines has continued (e.g., DeMaria and 
Kaplan 1994). 
 
2.1.3  Model Output Statistics 
 
 The perfect prog2 method used upper air 
observations as predictors in developing the relation-
ships, and then applied the relationships to the NWP 
predictions.  It was soon realized that the models had 
biases, and the relationships developed with “perfect” 
predictors did not apply as well as it had been hoped to 
NWP predictions.  Especially, the probabilities of, say, 
precipitation did not fair into climatological relative 
frequencies at very long projections, but had about the 
same variance at long projections as at short 
projections. 

                                                           
2  For more complete definitions of the classical, perfect prog, 
and MOS techniques, see Glahn (1985) or Wilks (2011). 

 The first application of using model predictors in 
developing the relationships was with a simple 
advective model over the eastern United States.  The 
first such operational product was issued to forecasters 
starting June 10, 1968 (WB3 1968b; Glahn and Lowry 
1967; 1972).  The first national MOS product was of 
probability of precipitation and started January 1, 1972 
(NWS 1971; Glahn and Lowry 1972).  This ushered in 
the modern era of statistical weather forecasting.  Many 
countries have adopted this method of using statistics in 
weather forecasting, although perfect prog and classical 
methods are used in some circumstances, especially 
where sufficient samples of NWP data are not available. 
 
 MOS products were expanded to other weather 
elements by the Techniques Development Laboratory 
(TDL, now the Meteorological Development Laboratory, 
MDL).  These products, disseminated in the early days 
by teletypewriter and facsimile, became a mainstay in 
the forecasting paradigm at forecast offices, not only in 
the National Weather Service (NWS) but also at military 
installations, and in the private sector. 
 
 MOS systems have been developed in many other 
countries too numerous to mention, sometimes 
replacing an older perfect prog system.  For instance, 
Wilson and Vallee (2003) describe Canada’s system. 
 
 The production of statistical forecasts should be 
viewed as a system, flowing from the taking of 
observations, the analysis (assimilation) of them for 
NWP, the development and operation of the models, the 
postprocessing, and whatever human activity is required 
to produce the final product.  The modeling community 
should be working hand-in-glove with the postpro-
cessing community.  This would insure the right 
information is available for postprocessing, and the 
verification that is part of postprocessing ought to help 
modelers in their development and in deciding what new 
or modified models should be implemented.  The 
modeling community needs to recognize the necessity 
and advantages of providing hindcasts (reforecasts; 
retrospective runs) for postprocessing; statistics cannot 
deduce the error characteristics of the model without a 
sample of data from that model encompassing weather 
conditions of many kinds.  It is possible that well 
designed experiments involving these two groups might 
lead to a better understanding, for instance, of whether 
more ensemble members or fewer members at higher 
resolution would provide better forecasts.  It is also 
possible the results might depend on whether the prime 
metrics were of the upper level flow, or whether the daily 

                                                           
3  These WB references are to the Technical Procedures 
Bulletins (TPB) started by Charles Roberts in July 1967 to 
inform users, principally field forecasters, of centrally produced 
Weather Bureau products.  They comprise a continuous record 
of new, modified, and dropped products from 1967 until shortly 
after 2000.  The Weather Bureau under ESSA became the 
National Weather Service under NOAA on October 3, 1970, 
and the references here are “NWS” rather than “WB” after that 
date.  Copies of the TPBs exist in the NOAA Library in Silver 
Spring, Maryland. 
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2-m temperature or precipitation relative frequency was 
deemed more important. 
 
2.1.4  New Methods 
 
 Besides the linear regression workhorse, and to a 
much lesser extent discriminant analysis, other methods 
that can be applied to any of the classes of techniques 
above (classical, perfect prog, MOS) have been 
developed.  While so-called linear regression and 
discriminant analysis are linear in their predictors, most 
applications define a system which is highly nonlinear.  
That is, predictors are defined that the developer 
believes have a linear relationship to the predictand.  
The innovations are unlimited. 
 
 The Empirical Orthogonal Functions that Lorenz 
(1956) brought into the meteorological literature have 
been used to some extent, especially in the last couple 
of decades in diagnosing the state of climate and its 
change.  In addition, canonical correlation has been 
used to some extent.  The degrees of freedom used by 
these techniques are usually large, and great care must 
be taken in assigning significance or physical meaning 
to the patterns associated with the coefficients. 
 
 Regression has been used to estimate the 
probability of an event, by using the predictand event as 
a “1" if it occurred in the sample, and a “0" if it didn’t.  
Not being constrained, regression may give a value > 1 
or < 0, both not reasonable for a probability forecast.  
This has been dealt with by just assigning the values > 1 
to 1 and the values < 0 to 0.  A model that does restrain 
the predicted values correctly is the Logit model 
(Brelsford and Jones 1967; Wilks 2011).  However, the 
solution cannot be obtained analytically (except in a 
very restricted case), and therefore iteration is required.  
As with most iterative methods, problems may arise in 
certain situations, and more computer time is required 
for large data sets and relationships. 
 
 The area of neural networks applied to weather 
forecasting has grown from its modest beginnings in the 
early ‘60's (Hu and Root 1964; Glahn 1964b);4 a good 
exposition is given by Marsban (2003).  Here, the intent 
is to let the model define the degree of non-linearity that 
exists among the predictors and predictand(s) in the 
data set.  As with defining non-linear predictors for 
regression, the variations in building the models, 
devising the training algorithms, and defining the 
predictors are limitless. 
 
 This is not an exhaustive list of current methods, 
but a few that will persist. 
 
2.2 Verification 
 
 It is imperative that the forecasts we make be 
verified, at least a representative sample of those made.  
                                                           
4  Early uses were for binary predictands and the method was 
called “adaptive logic,” but the basic model is essentially the 
same. 

This has been another rich area for the contribution of 
statistics to weather prediction.  Any method of 
verification must necessarily make use of statistics.  At 
first blush, one would think this to be a simple problem.  
A statement that has been attributed to various persons 
is, “Prediction is difficult, especially about the future.”  I 
say, “Verification is difficult, especially about the past.” 
 
 The interest in verification grew along with the 
interest in objective weather prediction, although the 
subject had been addressed much earlier, and U.S. 
weather service forecasts issued by the Signal Service 
had been verified from their inception.  Scores then 
were simple, usually being mean absolute error (MAE), 
mean square error, or root mean square error  for quasi-
continuous variables like temperature, and percent 
correct for dichotomous variables such as occurrence of 
precipitation.  The difficulties with the latter are well 
recognized, and an early debate about Finley (1884) 
verifying his tornado forecasts in this way has been 
thoroughly examined by Murphy (1996).  In that same 
paper Murphy states, “The burst of verification-related 
activities during the period 1884–1893 is referred to 
here as the ‘Finley affair.’ It marked the beginning of 
substantive conceptual and methodological develop-
ments and discussions in the important subdiscipline of 
forecast verification.”  This paper by Murphy is very 
complete and an interesting read concerning especially 
the pre-1900 verification activities.  It was during this 
period that Gilbert (1884) devised a score that has been 
“rediscovered” twice and is now generally called the 
Threat Score (Palmer and Allen 1949) or the Critical 
Success Index (Donaldson et al. 1975). 
 
 Glenn Brier and Roger Allen of the U.S. Weather 
Bureau were devoting time to verification in the late 
1940's and early 1950's.  They contributed a frequently 
quoted chapter to the Compendium of Meteorology 
(Brier and Allen 1951) in which they define three 
purposes of verification and discuss each: (1) economic, 
(2) administrative, and (3) scientific.  They also state, 
“. . . the verification scheme should influence the 
forecaster in no undesirable way.”  About the same 
time, Brier (1950) published a paper defining a score 
that has come to be called the Brier Score.  While this is 
nothing more than a mean square error of a probability 
forecast (e.g., 0.1) where the verifying variable is binary, 
either 1 if the event occurred and 0 if it did not, he 
proved that it would encourage the forecaster to issue 
the forecast that he/she really believed; that is, it would 
not influence the forecaster in an undesirable way.  In 
this paper, Brier also suggested that after a set of 
forecasts had been made, the relative frequency of the 
event could be computed for each value of probability 
forecast to determine whether the “forecast probabilities  
are  related  to the relative frequency of  the events' 
occurrence.”  By so doing, it might be concluded the 
forecast process should be modified.  This correspond-
ence between probability forecasts and the relative 
frequencies is what is now generally called “reliability.”  
While Brier did not use these words, he indicated a 
good score would be achieved when the forecasts were 
as sharp as possible within the restriction of reliability. 
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 The interest in verification paralleled to a great 
extent the interest in objective forecasting, both by 
numerical (dynamic) and statistical means.  Both 
objective forecasting and verification were made 
operationally possible by the development of digital 
computers.  The computer era also allowed the 
collection and processing of large volumes of data. The 
availability of orders of magnitude more forecasts and 
the ability to verify them, gave rise to renewed interest in 
methods of verification and in the establishment of 
systems to collect and verify the forecasts.  
 
 It would be impossible here to adequately review 
the development of verification of forecasts that has 
occurred since 1950.  Rather I will only mention some of 
the important scores and concepts that have been 
developed. 
 
 Fred Sanders (1963) decomposed the Brier Score 
into validity (i.e., reliability) and sharpness components.  
Other partitions have been introduced, (e.g. Murphy 
1972).  These breakdowns indicate how the probability 
forecasts can be improved. 
         
 In 1969, Ed Epstein (1969) published the Ranked 
Probability Score (RPS), and Allan Murphy (1969) 
showed it to be “proper.”  RPS, originally described for 
categorical forecasts, has been extended to the 
Continuous RPS (CRPS), and has been decomposed 
into components similar to those for the Brier Score 
(Herbach 2000).  
 
 The ROC (Relative Operating Characteristic) 
brought into the meteorological literature by Mason 
(1982) continues to increase in use.  It shows the 
discriminating power of a set of probability forecasts and 
is a good way of visualizing on a diagram the relative 
discriminating power of two or more sets of forecasts.  
However, it is probably not yet fully appreciated that the 
ROC does not at all address the issue of calibration. 
 
 Murphy and Winkler (1987), in an attempt to unify 
the many disparate verification metrics, published “A 
General Framework for Forecast Verification.”  It is 
based on the joint distribution of forecasts and 
observations, and two factorization are described, the 
calibration-refinement factorization and the likelihood-
base rate factorization.  They demonstrate the richness 
of information that is contained, in the case of 
categorical forecasts, in the contingency tables that 
were one of the early ways of displaying forecasts and 
matching observations. 
 
 Gandin and Murphy (1992) and Gerrity (1992) 
introduced and discuss the concept of equitability.  
Equitable scores “. . . discourage forecasters from 
exhibiting inappropriate preferences for some events at 
the expense of other events.  In particular, constant 
forecasts of any particular event–as well as forecasts in 
which events are chosen at random–achieve the same 
expected score. . .” (Gandin and Murphy 1992). 
 

 Most verification has been, and continues to be, 
done at points.  However, there has always been 
recognition for the need to consider the spatial aspects 
of forecasts.  It was imperative to evaluate the upper air 
forecasts produced by NWP.  The S1 score introduced 
by Teweles and Wobus (1954) was used for years and 
is still used to furnish a continuous record from the 
inception of NWP and before.  The anomaly correlation5 
is heavily used today in verifying spatial fields, although 
it ignores biases and is more appropriately considered a 
measure of potential performance, as is the ROC.   
However useful the S1 score is in measuring the 
accuracy of gradients of pressure or geopotential height, 
or the anomaly correlation is in measuring the 
correspondence of patterns, these measures do not 
address the aspects of placement of significant features, 
such as rain bands or severe weather.  Early work in 
this area has been done by Ebert and McBride (2000), 
and Brown et al. (2004) discuss an object-oriented 
approach.  An intercomparison of approaches has been 
reported by Gilleland et al. (2010), and they cite 
experimental use at some forecast centers.  This 
important  area will receive much attention in the future. 
 
 The expanding use of ensembles in the past 
decade or so provides the mechanism of estimating 
probabilities with no postprocessing other than 
determining the relative frequency of “events,” 
sometimes defined with thresholds, and has brought 
into focus verification techniques specific to probability 
forecasts.  The Rank Histogram, evidently brought into 
the published literature by Hamill and Colucci (1997, 
1998), is now an indispensable evaluation tool. 
 
 An important characteristic of forecasts is 
consistency from one forecast projection to another.  
For instance, a forecast for the same calendar day and 
time may be made multiple times, once at 7 days, once 
at 6 days, . . . , and finally 1 day ahead, or even oftener 
(e.g., and 12 h intervals).  The tendency of numerical 
model forecasts and MOS to exhibit unwanted 
“jumpiness” has been recognized for many years.  Such 
a tendency can lower the confidence of a user of the 
information, either a field forecaster or some other user.  
This aspect of forecast evaluation is beginning to get 
some attention through use of the Ruth-Glahn 
Convergence Score (Ruth et al. 2009; Lashley et al. 
2008).  
 
 An excellent book on verification by Jolliffe and 
Stephenson (2012) is in its second edition.  This is an 
important read for anyone interested in verification of 
weather forecasts.  To my knowledge, it is the first book 
dealing exclusively with weather forecast verification.  In 
addition, the bible on meteorological statistics has an 
excellent chapter on forecast verification (Wilks 2011).  

                                                           
5  Wilks (2011, p. 364) points out there are two versions of the 
anomaly correlation. 
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3.  PROBABILISTIC FORECASTING 
 
3.1  Status 
 
 If we discount the general impressions formed by 
observing natural phenomenon including the weather, 
probabilistic forecasting came into serious consideration 
in the early 20th century.  A bibliography and an early 
history on the subject put together by Allan Murphy 
(1966, 1998) lists a couple of publications in the late 
1800's, then many more in the 1920's and forward.  
Early examples are Dalton (1793), Dines (1902), and 
Cook (1906) who  discussed probabilities.  Early in the 
U.S. national weather service as it began in the Signal 
Service, Cleveland Abbe started issuing forecasts that 
were called “Weather Synopses and Probabilities” in 
1871 (Meyer 1871); this early history has been traced 
by Glahn (2012). 
 
 Probabilistic forecasting and the verification of 
probabilistic forecasts began to have serious attention in 
the U.S. Weather Bureau in the 1940's and 50's as the 
graphical, pre-computer, methods of objective 
forecasting (Allen and Vernon 1951) came into play, 
especially with the Research Forecaster Program, a 
program not unlike that of the Science and Operations 
Officer (SOO) in National Weather Service of today.6  
And, of course, hand in glove with these techniques 
came Glenn Brier’s classic paper on verification (Brier 
1950).  Largely due to the perseverance of Charles 
Roberts,7 the Bureau started a Probability of 
Precipitation (PoP) national forecasting program in 
19658 (Hughes 1980).  Verification of the PoP forecasts 
soon started and this program remains today.  
Unfortunately, the systematic expansion of the 
production and use of probabilistic forecasts did not take 
place as had been envisioned by some meteorologists. 
 
 Following the graphical methods of developing 
forecast relationships (e.g., Thompson 1950), and as 
operational NWP at the National Meteorological Center 
(NMC) became a reality in the mid and late 1950's, the 
Techniques Development Laboratory (TDL) began using 
NMC’s IBM 704 computer to experiment with producing 
probabilistic forecasts for use as guidance for Weather 
Bureau forecasters.  The first such PoP product debuted 
in 1969 and covered the eastern United States (WB 

                                                           
6  There were on the order of 10 Research Forecasters, one 
each at the larger forecast offices such as Los Angeles and 
Chicago.  Today, there is a SOO position at each of the 122 
Weather Forecast Offices. 

7  Memorandum from Charles Roberts, Head of the Technical 
Procedures Branch in the U.S. Weather Bureau, dated July 27, 
1965, transmits a draft proposed circular letter to formally 
initiate the Weather Bureau Probability Forecast Program. 

8  An interesting article was written by Myron Tribus (1970) not 
long after the PoP program started in which he expressed 
much hope for probabilistic forecasts.  Tribus, at the time 
Assistant Secretary of Commerce for Science and Technology, 
was an expert in the theory and practice, having written a book 
on the subject (Tribus 1969). 

1969).  As mentioned earlier, on January 1, 1972, an 
automated PoP product covering the conterminous 
United States replaced a manually produced one being 
disseminated by NMC (NWS 1971).  This transition to 
an automated product was largely due to Harlan Saylor, 
a senior manager and forecaster at NMC, who 
recognized that statistics had a role to play alongside 
NWP, and was here to stay.  That was a major 
breakthrough for statistical postprocessing. 
 
 Probabilistic guidance expanded into other 
weather elements, including ceiling height, visibility, and 
conditional probability of frozen precipitation.  The 
products were transmitted to forecasters by teletype-
writer and facsimile, along with categorical forecasts 
derived from the probabilities and thresholds based on 
desirable accuracy and/or skill metrics.  However, the 
probabilities, even though reliable, and furnishing the 
path whereby the categorical forecasts were made, 
were not heavily used, and were largely discontinued for 
lack of pull from the user community, the field 
forecasters being the primary user for TDL. 
 
 Probabilistic forecasting has been strongly 
supported by certain persons and groups from its 
beginning, and especially during the last decade.  The 
AMS has issued two Information Statements in strong 
support (2003; 2008).  The National Research Council 
(NRC 2006) published Completing the Forecast with the 
subtitle “Characterizing and Communicating Uncertainty 
for Better Decisions Using Weather and Climate 
Forecasts” in 2006, following up at the request of the 
NWS on Recommendation 8 in NRC’s report Fair 
Weather (NRC 2003), stating “The NWS should 
continue to adopt and improve probabilistic methods for 
communicating uncertainties in the data and forecasts 
where such methods are accepted as scientifically 
valid.”  Yet, probabilistic forecasting has not seen the 
expansion desired.  Why is that? 
  
 There are undoubtedly many factors, among them, 
I believe, are the following: 
 
1) While the economic benefit of using probabilistic 

information of weather, water, and climate fore-
casts and from other sources is huge (Hirschberg 
and Abrams 2011), a large part of the weather 
enterprise still services the general public, and 
there has not been an outcry from that public for 
probability forecasts.  As long as there is not a 
strong pull for the information, many forecasters 
and organizations are confident in their ability to 
provide the non-probabilistic service they are used 
to, and if the user does not desire probabilities, 
why produce them? 

 
2) Some persons in the weather enterprise question 

whether the concept of probability is understood 
by the general public.  I firmly believe that most 
people appreciate what “chance of” and “probabil-
ity of” means (see for instance Feller 1957, p. 2).  
After all, people deal with that concept every day–
what are the chances of my finding a parking 
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space, what is the probability supper will be ready 
when I get home, what is the likelihood my hay will 
get wet if I mow?  Twenty or 30 is less than 80, 
right?  Can I ever be 100% sure?  While this 
terminology may not be scientifically precise, I 
believe it is sufficient for the lay public, and that it 
is understood.  As long as scientists believe the 
concept of probability is too difficult for the masses 
to understand, they will not be prone to promote 
and provide such information. 

3) Furnishing probabilistic information for the full 
range of weather elements is a daunting chal-
lenge, both in the production and dissemination.  
For weather elements of a semi-continuous na-
ture, such as temperature, it takes about an order 
of magnitude increase in the number of numbers 
necessary to furnish a reasonably satisfactory 
description of the probability distribution (PDF) 
over a single number like 60 degrees, or even a 
range 58 to 61 degrees.  A probability must be of 
an “event.”  That is, what is it the probability of?  A 
characterization of a PDF can be a series of prob-
abilities, each being of an event, that can be used 
together to form an approximation to the PDF. 

  
One very simple probability forecast is of the 
probability of precipitation (PoP), the first probabil-
ity forecast issued by the Weather Bureau/NWS.  
The event was carefully defined–liquid precipita-
tion of > 0.01 inch in a 12-h period at a specific 
point.  Yet, studies have shown that this venerable 
product is not well understood.  However, the 
misunderstanding of the PoP forecast, if there is 
one, may be due to not understanding the defini-
tion of the event rather than not understanding the 
concept of probability (Murphy et al. 1980).  Windy 
tomorrow afternoon is an easy term to appreciate, 
but the definitional, production, educational, and 
dissemination challenges to go into the probabilis-
tic realm are not small. 
 

3.2  Progress 
 
 While probabilistic forecasting has not moved at 
the rapid pace we would have liked, statistics have 
provided notable progress, including: 
  
1) The production of reliable and skillful probabilistic 

information has been repeatedly demonstrated 
with centralized operational products, starting 
4 decades ago (e.g., Glahn and Lowry 1972; 
Glahn and Bocchieri 1975; Bocchieri and Glahn 
1976), most of the progress being tied closely to 
the growth of NWP and computer capacity.  It was 
feared that forecasters could not make reliable 
probability forecasts.  This fear was largely unjusti-
fied as shown by the verification system of the 
Weather Bureau.9   For many years, single model 

                                                           
9  The results of the Weather Bureau verification system at the 
beginning of the probability forecasting program is documented 
in a series of Technical Memoranda in the FCST series.  
National records were not being kept on individual forecasters, 

runs were made from one analysis, and the output 
was postprocessed into a variety of probabilistic 
products.  Climate forecasts are furnished in terms 
of probabilities of broad categories.  Stream flow is 
now characterized by probabilities (Fresch and 
Roe 2013).  Hurricane track forecasts have uncer-
tainty information.  More recently, ensembles are 
furnishing the foundation for better products, 
although ensembles alone do not provide probabil-
ities, rather they provide a discrete set of single 
value forecasts that can be processed into proba-
bilities.  When the ensemble members forecast for 
a specific event, the probability of the event can be 
estimated by counting the number of events that 
were and were not forecast.  However, to date, the 
reliability of such relative frequencies is lacking, 
and statistical postprocessing is necessary (see 
for example Gneiting et al. 2009). 
 

2) Awareness of the utility of probabilistic forecasts 
has been greatly increased, even if this awareness 
has not contributed to progress as much as de-
sired or expected.  Strong support has been 
voiced.  The NWS has produced training material, 
and COMET courses are available.  The National 
Oceanic and Atmospheric Administration (NOAA) 
has issued a “Fact Sheet” on weather forecast 
uncertainty for public consumption [available at:   
‘www.nrc.noaa.gov/stateofsciencefactsheets’. 
Short courses have been conducted at AMS 
meetings.  The AMS Probabilistic and Statistics 
Committee holds conferences every 2 years, at 
which probabilistic methods of forecasting and 
verification are prime.  The AMS created an Ad 
Hoc Committee on Uncertainty in Forecasts 
(ACUF); committee members produced a Weather 
and Climate Enterprise Strategic Implementation 
Plan for Generating and Communicating Forecast 
Uncertainty (Hirschberg and Abrams 2011), and a 
condensed version appeared in BAMS (Hirschberg 
et al. 2011).  The World Meteorological Society 
has issued guidelines on communicating forecast 
uncertainty (WMO 2008).  Aspects of probabilistic 
forecasting are now being studied and document-
ed by social scientists (e.g., Demuth et al. 2012). 
 

3) The science of verification of forecasts in general, 
and of probabilistic forecasts specifically, has 
grown tremendously, and is still growing.  When 
the first PoP product was produced, we essentially 
had the Brier Score (Brier 1950), a tremendous 

                                                                                           
and it would be difficult to amass sufficient cases for one 
forecaster to document reliability reliably.  Also, the emphasis 
was on the Brier Score and the Brier Skill Score, rather than 
reliability.  However, Technical Memorandum WBTM FCST 11, 
“Report on Weather Bureau Forecast Performance 1967-68 
and Comparison with Previous Years,” dated March 1969 
contains tables on pages 33-38 that indicate nationwide and by 
Weather Bureau Region the forecasts were quite reliable, 
except at the high end, where there was overforecasting 
(Roberts, et al. 1969).  Diagrams in Murphy (1985, pp. 357-
359) indicate high reliability for the 1980-81 seasons.  
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achievement of Brier at the time in realizing that it 
could not be “played,” but nevertheless is just a 
mean square error.10  Now, verification has been 
sliced and diced in many ingenious ways, even to 
different sets of components of the Brier Score 
itself.11  Many of these methods are elegantly 
described and exampled by Wilks (2011) and 
Jolliffe and Stephenson (2012). 

           
3.3 Challenges and Opportunities  
 
 There are many challenges and opportunities for 
statistics in probabilistic forecasting; the importance of 
statistics is becoming more recognized as the use of 
ensembles has grown.  Some to mention are: 
 
1) Except for the very first hours, the foundation of 

weather, water, and climate forecasting is in nu-
merical models.  Especially with the realization 
that the initialization for a model cannot be perfect, 
and that errors of specification will eventually 
overwhelm the numerical solution (Lorenz 1965), 
the stochastic-dynamic approach (Epstein 1969) 
implemented through ensembles (Lewis 2005) 
solidified the tie of statistics and dynamics in 
weather forecasting.  Ensembles are composed of 
individual runs of a model, each initialized with a 
plausible but different representation of the current 
and recent past data.  However, the three-
dimensional fields that represent the correct error 
distribution are not known, and various methods 
have been devised to produce the different starting 
points.  Initialization methods in use today produce 
forecasts that are underdispersive.  Data assimila-
tion is very important and is attracting much atten-
tion.  Statistical methods are bound to play an 
increasing role, as opposed to purely mathemati-
cal methods.  Data assimilation is crucial to the 
advance of forecasting, especially probabilistic 
forecasting, and deserves the highest attention. 
 

 2)  The blending of the several results from the 
members of an ensemble is another area deserv-
ing, and receiving, considerable attention.  Numer-
ous methods have been proposed, and some are, 
in fact, in use.  One method getting much play is 
Bayesian Model Averaging (Raftery et al. 2005).  
This is a method whereby the different members, 
or some grouping of members perhaps composed 
of members of similar model physics, can be 
weighted differently to arrive at the “best mean” 
forecast and the distribution around it  Another 
method in use in the NWS has been called EKD-
MOS for Ensemble Kernel Density MOS (Glahn et 
al. 2009).  Others (e.g., Woodcock and Engel 
2005) have blended forecasts from different 
sources to produce an improved product.  Much 
work is still needed in this area. 

                                                           
10  Roberts (1968, p. 139) presents an interesting discussion on 
not reporting the probability that is your true belief. 

11  Incidently, Brier called it the “Score P.” 

3) Not everyone in the weather enterprise is 
convinced of the importance of producing and 
providing uncertainty information.  A challenge is 
changing the paradigm of providing only determin-
istic, single-value forecasts.  The value of probabil-
istic information has to be accepted by meteorolo-
gists and users alike.  This is not an insignificant 
challenge. 

 
 4)   The general area of evaluation, even though much 

progress has been made in the past few decades, 
needs more work.  The desires for good probability 
forecasts seem simple enough–the forecasts 
should be as sharp as possible within the con-
straint of reliability.  Even so, some probability 
ranges may be more important to a user than 
others, and many times it is in the tails of the 
distribution that the forecasts are important. We 
have the RPS (Epstein 1969) and its extension the 
CRPS (Matheson and Winkler 1976; Unger 1985), 
but the latter is more sensitive to the placement of 
the median than the shape of the tails. 

 
 Meteorological centers and private firms issuing 
statistical postprocessed products have to decide 
on the method/technique to use.  Many papers on 
different techniques appear in refereed journals, 
but provide little help in deciding on an operational 
technique to implement.  The reason is that there 
is no systematic method of comparing methods on 
an even playing field.  Usually there is some com-
parison presented; it may be the author’s new 
highly developed method versus a known tech-
nique, but the comparison technique has not been 
implemented optimally by the author.  Or the 
comparison may be to some default forecast such 
as persistence for a 24-h forecast or to a simple 
climatic relative frequency for a 48-h forecast.  
These latter may have been adequate compari-
sons 40 years ago, but not today.  The operational 
entity needs to know how results from the new 
method compare to what is already operational; 
usually these operational forecasts are readily 
available and could furnish a standard to beat. 
 

 5)  There is inadequate recognition for the need for 
education and training for meteorologists in statis-
tics, not only in dealing with probabilities.  It has 
been my experience over the past years that 
meteorologists entering the work force may have 
at most one course in statistics.  Applicants with 
significant statistics courses under their belt are 
the exception. 
 
The WMO issues “Guidelines for the Education 
and Training of Personnel in Meteorology and 
Operational Hydrology” (WMO 2001).  I find no 
mention of statistics whatsoever.  To secure a job 
in the U.S. Government as a meteorologist, no 
specific qualifications in statistics are required 
(U.S. Govt. 1998); statistics is mentioned, but is 
one of 1l sciences for which a total of 9 semester 
hours (essentially three courses)  are required.  
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 Furthermore, the importance of statistics seems to 
not be recognized by those mentoring students in 
college.  The AMS periodically publishes an Infor-
mation Statement “Bachelor’s Degree in Atmos-
pheric Science,” the last being in December 2010 
(AMS 2010).  The Statement is issued for the “. . .  
primary purpose . . .  to provide guidance to uni-
versity faculty and administrators responsible for 
undergraduate programs in atmospheric science,” 
meteorology and atmospheric science being 
considered equivalent in the Statement.  The 
Statement was drafted by a committee of 
10 members chosen by the AMS Board on Higher 
Education.  While the membership was capped at 
10, others who had volunteered but not selected 
were included informally in the email discussions.  
Of the 16 who were regularly on the addressee list, 
one was an AMS staff member and of the other 
15, 13 had the email domain name extension 
“edu.”  While there was one government repre-
sentative and one from private industry, it seems 
the committee was overpoweringly weighted to 
university professors and had inadequate repre-
sentation of those entities that actually hire mete-
orologists and know what the requirements are.  
Only after lobbying on my part, the terms probabil-
ity and statistics were included in a couple of 
places, whereas the previous such Statement had 
none.  For preparation for graduate school, the 
Statement does not mention statistics.  The AMS 
has available a scholarship dedicated to students 
showing background or interest in statistics.  The 
requirements are not stringent.  However, this past 
year, there was no qualified applicant; this was 
also the case for a previous year.  My conclusion 
is that there is not a lot of emphasis or interest in 
statistics in the departments training our future 
meteorologists.  This needs to change. 
 

4.  DECISION MAKING 
 
4.1 Status 
 
 Decision making under uncertainty has been 
practiced as long as decisions have been made.  Even 
as a science, the concept is decades old (Chernoff and 
Moses 1959; Miller and Starr 1960), and attempts have 
been made to formally marry decision models and 
forecasts (see Glahn 1964a for an early example).  
Decisions based partly on weather information are 
made by a wide variety of individuals and organizations 
and are of vital importance to the saving of lives and 
property and to the economy of the country.  While 
probabilistic forecasts can be made, and are for some 
weather elements, much of the information furnished to 
users is still non-probabilistic in nature.  There are 
sophisticated users who access probabilistic 
information, either from the NWS or from private 
entities, and use that information in decision models.  It 
is difficult to assess the degree to which this enterprise 
has matured because the companies involved generally 
treat the process as proprietary and do not publish or 
otherwise make it available. 

 The introduction into the literature of the Cost/Loss 
(C/L) model by Thompson (1962) raised awareness of 
the importance of economic value in assessing 
forecasts.  This model has been studied and used 
extensively, thereby bringing a better understanding of 
the decision making process.  However, real decisions 
are usually based on many factors, weather being only 
one of them.  The decision for an action 2 days from 
now might depend on the forecast not only for 2 days 
from now, but also before that and after that.  Such 
decision models become very complicated, and models 
presented in the literature generally depend only on one 
forecast, but discussions by Murphy et al. (1985),  
Krzysztofowicz (1986), and  Epstein and Murphy (1988) 
are exceptions and paved the way for more realistic 
models 
 
4.2 Progress 
 
 The weather enterprise has grown tremendously 
over the past couple of decades.  Much of the progress 
has been not only in making more skillful forecasts, but 
in getting them into the hands of users who then make 
decisions.  In fact, in many cases the users are 
consulted as to their needs, even to the extent they are 
assisted in making their decisions.  This can happen at 
any stage in the producer/user chain. 
 
 At the end of the chain where forecasters are 
providing the final product, be it from the NWS or private 
companies, the tie has become stronger.  While hard 
information is difficulty to come by, the tie is likely very 
close in the private sector–profit depends on it.  In the 
NWS, one of the goals in its Weather Ready Nation 
Strategic Plan (NWS 2011) is to provide forecasts that 
will “compare weather risk to tolerance levels based on 
societal or economic impacts, communicating the 
potential social, economic, and environmental impacts.”  
Close ties exist between NWS forecast producers and 
governmental agencies involved in protection of life and 
property.  The contribution of statistics is to provide 
processed data and analyses to help the user 
understand how to make better decisions. 
 
4.3 Challenges and Opportunities 
 
 The science and practice of decision making 
under uncertainty are in their infancy.  The challenges 
below relate to understanding probability science, 
understanding the customer, and better decision 
models. 

 
 1) The meteorologist who desires to help a user in 

actual decision making under uncertainty needs to 
understand probability and decision theory and 
how decision models are built.  Models may need 
to be “second order” where probabilistic weather 
forecasts are used to make probabilistic forecasts 
of environmental hazards, such as harmful algal 
bloom.  While most everyone, I believe, under-
stands the basic concepts of probability, the un-
derstanding may not go much farther than that.  
For instance, the probability of two separate 
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events may be available and the understanding of 
how to make a decision based on each one indi-
vidually is known, how does one make a decision 
based on both together?  Is that possible?  What 
other information is needed?  What should the 
development community be tasked to provide in 
order to make the decision?  This is probably the 
simplest step up from a basic decision algorithm 
based on one weather variable.  It is my percep-
tion that the knowledge needed here is generally 
lacking.  The problem stems from lack of statistical 
training discussed above.  If meteorologists are to 
assist in making critical economic or life and death 
decisions, then they should not be novices in the 
theory of probability and decision theory. 
 

 2) The success in helping users of weather 
information make decisions lies with understanding 
what the needs are.  A major step is being able to 
convince the user that probability forecasts can 
actually help in his/her operation. The details are 
very important; for instance, when does the user 
need to be concerned about the weather, what 
forecasts are needed, and what are the risks?  
What other variables come into play in the deci-
sion?  Is weather a major or minor player?  Is 
timing of a weather event of critical importance?  
Can a mathematical model be built to accommo-
date the predominant factors, and if so, can the 
weather information be better tailored to assist?  
For instance, it might be the joint probability of two 
or more weather variables is needed.  If so, can 
the developers be tasked to provide it?   Statistics 
can provide user relevant information once it is 
known what is needed. The forecaster needs to 
work closely with the user down the chain and also 
the developer up the chain.  This interactive aspect 
is not well developed in the weather enterprise and 
deserves much attention. 
 

3) Decisions concerning whether one forecasting 
method is better than another [in terms of some 
metric(s)] may involve statistical significance tests.  
The probability of Type 1 error is usually set at 
some low level like 1% or 5%.  This implies that 
the decision maker wants to be quite sure that the 
difference calculated is real and a difference of the 
same sign would also be found in another sample 
from the same population.  Unfortunately, the 
probability of Type 2 error is not always consid-
ered, and the decision may not require a low 
probability of Type 1 error.  Placing error bars can 
furnish more flexibility, but the same difficulty can 
exist.  An inherent difficulty with applying signifi-
cance tests is that the sample points are highly 
redundant, and the degrees of freedom in the 
sample are not known.  Temporal non-
independence can be dealt with in what is proba-
bly a satisfactory manner by assuming a Markov 
model and computing an “effective sample size” 
with which the variance of the statistic being used 
can be adjusted  (e.g., Wilks 2011, p. 147, 422) .  
Dealing with spatial non-independence is much 

more difficult.  Many times, data are aggregated 
across stations, or many grid points are involved.  
How is this dealt with?  DeSole and Shukla (2009) 
discuss the issue of spatial non-independence and 
reference other work, but the issue is far from 
settled.  Likely this is best dealt with by some form 
of block randomization such as described in Wilks 
(2011 ,Ch. 5; 1997). 
 
Tests may be made for several projections, sepa-
rated by 1 or more hours; typically this might be 
MAE for temperature every 12 hours out to, say, 
11 days.  Tests of the results for a particular tech-
nique may not reject the null hypothesis at the 5% 
level for any projection, but does for every protec-
tion at the 20% level.  How does one come to an 
overall conclusion as to whether to implement or 
not.  Certainly, the errors and the scores are 
correlated, but there is also considerable inde-
pendent information among the 22 scores.  Meth-
ods to deal with this situation need to be devised.  
A unified approach that deals with both temporal 
and spatial non-independence and across strata, 
such as projections, should be a goal. 

 
5. SUMMARY 
 
 The use of statistics, models for postprocessing, 
and metrics for verification have come a long way in the 
last 60 years, marching hand in hand with NWP and 
computer technology.  I have concentrated on 
forecasting because of the theme of the meeting, but 
the use of statistics is much broader than that.  I have 
also concentrated on weather at the expense of water 
and climate, because there are summary talks to follow 
on those subjects (Fresch and Roe 2013; Collins 2013).  
As we learn more, we also realize how much more there 
is to know.  More details and a broader scope are 
contained in the ACUF report mentioned above 
(Hirschberg and Abrams 2011). 
 
 While status and progress are important, what is 
of most interest and concern is the way forward–the 
challenges and opportunities.  I have presented some of 
the major challenges and areas of growth involving 
statistics as I see them for taking predictions to the next 
level.  The other presentations in this Symposium are 
also rich in details in moving forward toward that 
objective. 
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