
1.1

Employing Task Parallelism to Facilitate Dynamic Comparison of Model Output

Hannah Aizenman ∗ and Michael Grossberg
Glasslab, City College of New York, New York, New York

David Brown and Mary Haley
CISL, NCAR, Boulder

ABSTRACT

The analysis of many climate models, such as the Community Earth System Model
(CESM), require extensive and expensive computing and storage resources. Since these
resources are often out of the reach of many young scientists and small research groups,
the goal of this National Consortium of Atmospheric Research’s (NCAR) Computa-
tional Information Systems Laboratory’s (CISL) Summer Internships in Parallel Com-
putational Science(SIParCS) project was to make a commonly used climate model diag-
nostic tool available through the web so that users could make use of NCAR resources in
a simple and public way. The user facing interface is written in HTML/JavaScript and
is built on top of a RESTful API implemented using the Pyramid web framework. An
advantage of the Pyramid web framework is its lightweight plug and play architecture
which makes it easier to later maintain, customize, and extend the tool as the needs
of the user and application grow. The gevent library was used to add in asynchronous
task execution so that each execution of the diagnostics could be independent. This will
enable web-based real-time monitoring of the status of a diagnostic run. The results of
the run are treated as a RESTful resource so that they can be obtained as a compressed
archive or file list, for example, using the same URL, and to make it simpler to later
integrate a database or some caching scheme. The UI is separated from the server side
API to give developers the ability to easily add in new interfaces without destroying
functional ones.
A major aspect of building the web interface was rewriting the CESM Ocean Model
Working Group’s (OMWG) model diagnostics c-shell driver scripts as a Python
library. This was done mainly to simplify the process of running the diagnostics with
user defined settings, but also to improve their usability, maintainability, robustness,
and extensibility. Python was chosen in large part because it has extensive support
for managing calls to shell utilities, which was crucial because the diagnostics depend
very heavily on numerous shell and NCL scripts that would take an extensive amount
of time to convert to Python. The library wraps the Swift parallel scripting language
version of the diagnostics so that the NCL scripts at the core of the diagnostics can
be run in parallel instead of serially. Functions for creating swift configurations were
also built into the library to make working with swift easier. The web version takes
full advantage of this by running independently configured jobs on every call and
returning the results as either an archive, a styled folder, or a plain folder, depending
on the URL. This flexibility was a major design goal in creating this tool, because
that makes it easier for users to fit it into their work-flow, which is key to any form of
widespread adoption of the tool. We created a maintainable and highly documented
web interface to the parallel version of CESM-OMWG diagnostics so that researchers
outside of NCAR could more easily work with the CESM and so that researchers
could extend this tool to other datasets and diagnostics, or build their own, thereby
increasing public access to both data and the tools used to understand it.

1. Introduction

The Community Earth System Model (CESM) gener-
ates terabytes of data on a single run, creating undue hard-

ship for many young scientists and small research groups
who would want to work with it, so one of the projects for
this year’s Summer Internships in Parallel Computational
Science(SIParCS), which is run by the Computational In-

1



formation Systems Laboratory’s (CISL) at NCAR, was to
make the analysis tools for the ocean component of the
CESM more accessible. Before work began on the web in-
terface, the control scripts for the Ocean Model Working
Group’s (OMWG) Parallel Ocean Program (POP) diag-
nostics were rewritten to work within a web-framework by
turining them into a Python library. Python was used
because it has extensive native support for running exter-
nal scripts, which make up a large part of the diagnostics.
A web-interface (WebDiag) was also created so that re-
searchers could explore the diagnostics more easily. The
interface is designed as a very thin wrapper on top of the
PyDiag library and the user facing interface is written in
HTML/JavaScript and is built on top of a RESTful API
implemented using the Pyramid web framework. Through-
out the development, a modular architecture was stressed
so that the tool could be adapted as requirements change.

2. Prior Work

The project is a direct successor to the SWIFT OMWG
POP DiagnosticsCESM Ocean Model Working Group (2012)
developed by the CISL and Climate and Global Dynamics
(CGD) at NCAR and the Parviz group at Argonne Na-
tional Lab (ANL). The diagnostics analyze results of the
CESM Ocean model given a model run as input. There
are three main diagnostics scripts: seasonal and time-mean
diagnostics of a single model run (popdiag), time-series di-
agnostics for one rune (popdiagts), and the difference be-
tween two model runs or two time-periods of the same run
(popdiagdiff). These scripts, written in c-shell, setup the
environment variables for a run and then either call the
NCL scripts directly or call a swift script that calls the
NCL scripts in parallel. The NCL scripts generate the ta-
bles and figures that make up the body of the analysis,
while other c-shell, awk, and Perl scripts do miscellaneous
processing. The diagnostics yield variables derived from
the models, for example salt content and ocean tempera-
ture. The c-shell scripts also can also create a webpage
by copying the results into a folder, but it depends on the
output file names always being known and only displays
some results.

3. Software Architecture

WebDiag uses a Service Oriented Architecture (SOA),
as seen in figure 1 where the UI, tools for getting the data
and diagnostics, and the databases and PyDiag are all inde-
pendent. An SOA approach is used to allow for greater flex-
ibility in deployment due to the computational and storage
requirements of the analysis and the security requirements
at NCAR, because in deployment the computational side
can be deployed on a cluster hidden behind firewalls while
the UI can be deployed anywhere.

Fig. 1. The figure illustrates the three distinct sections of
the tool: the diagnostics handled by the standalone PyDiag
library, the web framework layer that translates user input
into PyDiag function calls, and the JavaScript/HTML UI
layer that sits in the users browser.

a. PyDiag

PyDiag is the library version of the POP diagnostics.
The guiding principal was to simplify, so the dependencies
were isolated and reducded and the various methods for
setting user configurations (environment variables, XML
files, tab delimited, cdm, etc.) were all changed to one
format (dictionaries) and utilities are used to generate the
correct types. A secondary principal was ease of use, so
PyDiag is compatible with Python¿=2.4 as older versions
of Python are common on research machines. The modular
architecture also makes it easier to add in new diagnostics,
and the extensive documentation and tests provide tem-
plates for how to do so

b. WebDiag Interface

WebDiag’s web service functionality is provided using
the Pyramid Python Web Framework (Pyramid Develop-
ment Team (2010)). Pyramid was chosen because it is can
be used to write fairly lightweight applications. As seen
in 2, the web-service layer takes the users request, vali-
dates it, and then passes it down into an interface that
grabs the information about the data from the database
and sends all that information to PyDiag so that it can do
the computation. A database is used to store information
about the model and observational data because diagnostic
runs tend to use the same datasets. To simplify debugging
web errors, the URL logic (validation and parsing) is kept
seperate from the code that manages the run.

c. User Interface

As shown in figure 3 and figure 4, using a RESTful in-
terface means that the website is modeled as a collection of

2



Fig. 2. The user makes a selection that gets encoded in a
URL, which gets parsed by a web-service. The contents of
the url are then used to retrieve data from the database.
The data and any other necessary arguments in the URL
are then passed into PyDiag, which runs the diagnostics.

resources. In this application, the resources are the origi-
nal dataset, the available list of diagnostics, and the result.
This allows the user to write a dynamic interface based on
the resources, as in 3, where the menu is generated based
on the chosen option. In figure 4, the diagnostic is started,
thereby creating the results resource, using POST /diag-
nostic, which yields a unique identifier for the results once
it finishes. The resource is then retrieved using is GET
/diagnostic/{d}, with optional keywords to specifiy the
format of the results. Pyramid simplified the process of
using RESTful architecture because it has really good sup-
port for modeling every resource as an object.

4. Conclusion

We created a web based and API interface to the OMWG
POP diagnostics to simplify and somewhat automate run-
ning the diagnostics. Our multiple interfaces using a va-
riety of modular architecture gives the user the power to
interact with the diagnostics in a number of ways, or even
ignore the diagnostics entirely if the user just wants the
data. By keeping the components modular, we facilitate
reuse of the code in new applications. The architecture is
designed to encourage future work in expanding to other
diagnostics and managing the very large results the diag-
nostics yield because those are just more plug-ins.

Acknowledgments.

This work was done as a summer project as part of
SIParCS at NCAR-CISL, with mentoring by David Brown
and Mary Haley (NCAR-CISL). The following people also
provided invaluable feedback: Susan Bates and Gokhan

Fig. 3. The GUI menu makes a request for every type of
analysis provided by popdiag, and since the diagnostics are
a service, the server response with a list of plots. This list
is then used to populate a secondary menu.

Fig. 4. Multiple ways of viewing the same results by re-
trieving a resource and then applying a view to it.

Danabasoglu (NCAR-CGD), Sheri Mickelson (ANL), Paul
Goodman, Nathan Wilhelmi, Wei Huang and Rick Brown-
rigg(NCAR/CISL) and Michael Grossberg and Jeremy Neiman
(Glasslab, CCNY) .

REFERENCES

CESM Ocean Model Working Group, 2012: CESM1.0:
Parallel Ocean Program (POP2). http://www.cesm.

ucar.edu/models/cesm1.0/pop2/.

Pyramid Development Team, 2010: The pyramid
web application development framework. http://www.
pylonsproject.org/.

3


