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1. INTRODUCTION 

Accurate intensity estimation of tropical cyclones 

(TC) is an important topic of research due to their 

economic impact and public safety concerns.  An 

accurate measure of the current wind strength is 

necessary to accurately predict TC intensity.  Wind 

measurement is obtained by aircraft flying through the 

cyclones, however routine flights occur only in the North 

Atlantic Ocean.  Meteorologists also use satellite 

images to infer the wind strength.  The Dvorak 

technique (DT) is the state-of-the-art method that has 

been used over three decades for estimating the 

intensity of a tropical cyclone (Velden et al. 2006) using 

satellite images.  The DT subjectively estimates TCs’ 

intensity based on visible and infrared satellite images 

(Dvorak 1984).  Improvement of the original DT evolved 

into the objective Dvorak technique (ODT), which used 

computer based analysis to estimate intensity (Velden 

and Olander 1998).  To overcome the limitations of the 

ODT, such as manual selection of the storm center or 

the inability to operate on weak storms, the advanced 

objective Dvorak technique (AODT) was developed.  

The most recent version of ODT is the advanced Dvorak 

technique (ADT) (Olander and Velden 2007).  Unlike the 

ODT and AODT, whose focuses were to mimic the 

subjective technique, the ADT concentrates on 

extending the method beyond the original application 

and constraints.  

Our new algorithm for estimating intensity used 

features of satellite images as predictors of the TCs’ 

intensity.  We hypothesized that we could discover 

unknown regularities and abnormalities in the large 

group of past observations and use them to help human 

experts interpret changes in TCs’ intensity.  This 

research was inspired by the availability of satellite 

imagery for tropical cyclones.  Our goal was to provide a 

data  mining  tool  which  developed  a  new   automated 
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technique for TC estimation using hurricane satellite 

(HURSAT) data. 

The remainder of the paper is organized as follows:  

section 2 provides the information about the data used 

for this study.  Section 3 describes the methods used in 

image analysis.  Section 4 discusses the validation 

process and the results, and section 5 provides a 

summary and a discussion of future work. 

2. DATA 

This Hurricane satellite data (HURSAT–B1, version 

05) described in Knapp and Kossin (2007) provides 

infrared imagery for global tropical cyclones from 1978-

2009.  HURSAT–B1 data files are in a network common 

data form (NetCDF) format, in which each file is a 

snapshot of the storm from one or more of the 

international geostationary weather satellites.  The 

infrared satellite images with the best view (that is, the 

smallest view zenith angle) were considered for this 

study. 

In this study, we focus on a subset of North Atlantic 

storms for which there were contemporaneous low-level 

aircraft-measured intensities.  Following Kossin et al. 

(2007), the training data was restricted to include fixes 

that are over water and are south of 45˚N.  We 

considered the best track intensity estimates to be those 

with aircraft reconnaissance within 12 hours.  This 

subset comprised 2,016 measurements in 165 storms 

from 1988 – 2006. 

From HURSAT we derived the mean and standard 

deviation (SD) of brightness temperature (BT in Kelvin) 

for 70 azimuthal rings in 10 km bins from the storm 

center (5km, 15km, 25km... 695km).  These are used as 

predictors for measuring the similarity (closeness) in 

Euclidean space for different storms. 

3. METHODOLOGY 

Our new technique used the age (or duration) of the 

cyclone and imagery from the current time along with 

imagery from 6, 12 and 24 hours before the current time 

to estimate the intensity.  The age of the cyclone refers 

to the approximate time elapsed between present (time 

of intensity estimation) and the starting time of the storm 

(Fetanat et al., 2012).  The current and the preceding 6, 

12 and 24 hour images expressed by BT (mean and 

SD) of the selected rings around the center of the storm. 
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The new technique for estimating intensity is 

illustrated in Figure 1.  First, the data in the training set 

were organized according to selected features (age, and 

current and the preceding 6, 12, 24 hours’ images).  

Second, for each query entry the same features were 

extracted.  The third and the forth steps were used for 

sorting similar entries from training set first based on 

age, followed by the current and prior BT of the images 

for a given query.  The sorting was performed in this 

order since the units of the features, age (hour) and BT 

(Kelvin), are different.  Similarity was defined in terms of 

Euclidian distance between the query entry and all of 

the training entries. 

 

 
Figure 1: Block diagram of the new technique for image 

analysis 

The third step consisted of searching the training 

data based on only similar durations.  All entries in the 

training data were sorted in ascending order based on 

the computed Euclidian distance between the duration 

(in hours) of the query entry and entries from the 

training set.  The entry from the training data with the 

shortest distance (most similar duration) was set as the 

first entry of the sorted training entries.   

In the fourth step, the sorted entries (i.e., of step 

three) were sorted again based on the Euclidian 

distance between the current and previous BT of the 

images of the query entry and the corresponding 

features of the training entries.  In this step, BTs mean 

and SD of the selected image rings were used for 

comparison.  A sequential forward selection (SFS) 

algorithm (Koutroumbas, 1999) was used to find the 

optimum number of the rings for similarity comparison.  

In this algorithm, each ring was sequentially added to an 

empty candidate set until the addition of further rings did 

not decrease the criterion.  The criteria used were the 

mean absolute error (MAE) and root mean square error 

(RMSE).  Instead of focusing on whether the estimated 

values were an exact match with the real-values, the 

accuracy was measured in terms of the difference 

between the predicted values and the actual values.  

The loss functions measure the error among actual 

values and the estimated values.  The most common 

loss functions are MAE and RMSE (Han and Kamber 

2006).  Finally, 14 rings out of a possible 70 rings 

around the center of the storm were selected using the 

SFS algorithm for comparison as described in section 

(4.1). 

Fifth, we applied the K-nearest neighbor algorithm 

to classify K entries with the shortest Euclidian distance.  

Each entry was described by 112 attributes (or 

features).  Each training entry represented a point in a 

112-dimensional space.  When presented with a query 

with an unknown intensity, a K-nearest-neighbor 

classifier searched the 112-dimensional space for the K 

training entries that were closest to the unknown entry.  

“Closeness” was defined in terms of the Euclidean 

distance.  These K entries were the K “nearest 

neighbors” of the unknown query entry. 

Sixth, the estimated intensity of the query entry was 

the average intensity value of the 10 nearest neighbors.  

The algorithm's performance was affected by the choice 

of K.  If K was small, then the algorithm could be 

affected by noisy points.  If K was too large, then the 

nearest neighbors could have belonged to different 

classes.  By changing the value of K from 1 to 200 for 

several validation processes, the optimum value 

appeared to be 10, which had a minimum averaged 

error in terms of MAE and RMSE. 

An example was provided to clarify our new 

technique.  Consider the query entry to be Hurricane 

Katrina at 1200 UTC 27 August 2005 (Figure 2).  The 

goal was to estimate the intensity corresponding to the 

given query entry at that given date and time.  The 

nearest neighbor to Hurricane Katrina at that time using 

the method described above was from the training set 

for Hurricane Gustav at 0000 UTC 28 August 1990 

(Figure 3); Gustav’s intensity was 95 kt.  This happened 

to be only 5 kt from the estimated intensity of Katrina of 

 

 
 

Figure 2: Sample query for Hurricane Katrina (2005) 
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Figure 3: Nearest neighbor analog to Figure 2 from the 

training set, Hurricane Gustav, 28 August 1990. 

 

100 kt.  Figure 4 shows the similarity between the query 

and the NN in the 14 selected rings. 

 

4. RESULTS 

Several tests were done using n-fold cross- 

validation (usually referred as k-fold cross-validation) for 

statistical justification of the new technique.  The 

distribution of the error is shown in Figure 5a.  Error was 

defined as the absolute difference between 

reconnaissance-based measurements of intensity and 

the estimated value.  Figure 5a can directly be 

compared to Figure 9 of Velden et al. (2006).  The 

authors compared the Dvorak intensity estimates (for 

the period 1977-2003) with the best estimates of track 

intensity which were concurrent with aircraft 

reconnaissance; and found that 90%, 75% and 50% of 

their mean absolute errors were less than 18 kt, 12 kt 

and 5 kt respectively.  In comparison, 90%, 75% and 

50% of the absolute errors of this new algorithm were 

less than 18 kt, 14 kt and 10 kt respectively.  Figure 5a 

clearly shows that the new technique has similar mean 

absolute error for 90% of the estimates and a much 

lower maximum absolute error (27 kt) as compared to 

42 kt of the Dvorak technique (Figure 9 of Velden et al., 

2006).  Moreover, the averaged MAE, RMSE, and bias 

 

 
Figure 4:  Azimuthal BT mean (a) and SD (b) for the 14 rings of the query image in Figure 2 (Hurricane Katrina, 2005) 

and nearest neighbor mean (c) and SD (d) from the training set (Hurricane Gustav, 1990). 
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Figure 5: Cross-validation results using 165 storms in the Northern Atlantic from 1988 -2006 which were 
contemporaneous with the aircraft reconnaissance-based data for validation.  (a) Distribution of the error (averaged 
MAE) for new method, (b) MAE, (c) RMSE, and (d) bias 
 
of the new technique were 11 kt, 13 kt, and -1 kt 

respectively for all the 2016 samples of the storms.  The 

term bias means the average differences between 

estimated values and the best track values which are 

concurrent with aircraft reconnaissance.  The validation 

results for the 165 storms are shown in Figures 5b, 5c 

and 5d. 

We present, in Figure 6, examples of estimation of 

intensity of the storms Allison (1995), Erika (1997) Floyd 

(1999) and Katrina (2005) based on our new estimation 

technique.  These graphs show that the estimated 

values follow the best track (reconnaissance based 

data) values closely. 

 

4.1 Sensitivity Analysis of the Selected Parameters 

The number of similar images (K) used to estimate 

the intensity and the numbers of the rings around the 

center of storm were determined based on their effect 

on the average changes in the values of MAE and 

RMSE.  This is done by changing the values of K and 

the ring number from 1 to 200 and 1 to 70 respectively 

and choosing the parameters with the minimum error 

values in n-fold cross validation.  Variation of averaged 

MAE and RMSE are shown in Figure 7.  Based on these 

variations, values for parameters were selected as K 

equal to 10 and the number of the rings as equal to 14.  

These 14 rings are 14 consecutive rings (5km, 15km,…, 

135km) from the TC’s center. 

5. SUMMARY AND FUTURE WORK 

A technique for estimating intensity has been 

described, in which maximum sustained wind speed 

was estimated from analogs of storm imagery.  The new 

image analysis used the current and preceding 6, 12 

and 24 hours’ infrared satellite snapshots of TCs along 

with duration (age), as predictors of the expected 

intensity.  Instead of regression techniques, the 

intensities of 10 closest analogs (determined using a
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Figure 6: Best track (reconnaissance based data) and estimations using the new technique for (a) storm Allison 

(1995, MAE= 3.86 kt) (b) storm Erika (1997, MAE= 6.97 kt) (c) storm Floyd (1999, MAE= 7.46 kt) (d) storm Katrina 

(2005, MAE= 7.91 kt) 

 

Figure 7: Variations of the average (a) RMSE and (b) MAE versus K and ring number 
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K-nearest-neighbor (K-NN) algorithm) were averaged to 

estimate the intensity.  Several tests were implemented 

to statistically justify the new algorithm using n-fold 

cross-validation.  The resulting average MAE is 11 kt 

(50% of points are within 10 kt).  Moreover, the 

averaged MAE, RMSE, and bias of the new technique 

were 11 kt, 13 kt, and -1 kt respectively for all the 2016 

samples of the storms. 

New technique’s accuracy is parallel with current 

objective techniques.  The new technique also can be 

considered as a fully automated system which requires 

no human input except for the selection of the center of 

the circulation in the image.  That is, the new algorithm 

could process a set of TCs’ images based solely on 

imagery and the age of the cyclone.  Thus, the system 

could produce regular estimates of the TC’s intensity, 

for a given disturbance location, independent from any 

human interpretation.  A fully automated processing 

system could be developed using automated system 

center techniques, such as those from Wimmers and 

Velden (2010). 

Future work to improve the technique could include 

adding temporal constraints on the estimated intensity 

and increasing the number of training samples at higher 

 intensities.  Nonetheless, the simplicity, objectivity and 

consistency of our approach make it an important tool 

for estimating tropical cyclone intensity. 
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