Monday, 7 January 2013
Exhibit Hall 3 (Austin Convention Center)
Saltcedar is an introduced, salt-tolerant shrub that now dominates many flow-regulated western U.S. rivers. Saltcedar control programs have been implemented to salvage water and to allow the return of native vegetation to infested rivers. However, there is much debate about how much water saltcedar actually uses and the range of ecohydrological niches it occupies. Ground methods for measuring riparian zone ET have improved and there is considerable interest in developing remote sensing methods for saltcedar to conduct wide-area monitoring of water use. Both thermal band and vegetation index methods have been used to estimate riparian ET. However, several problems present themselves in applying existing remote sensing methods to riparian corridors. First, many riparian corridors are narrow and are surrounded by arid uplands, hence they cannot be treated as energetically closed systems, an assumption of thermal band methods that calculate ET as a residual in the surface energy balance. Second, contrary to the assumption that riparian phreatophytes typically grow under unstressed conditions since they are rooted into groundwater, we find that saltcedar stands are under substantial degrees of apparent moisture stress, exhibiting midday depression of transpiration and stomatal conductance, and decreases in stomatal conductance over the growing season as depth to groundwater increases. Furthermore, the degree of stress is site-specific, depending on local soil texture, salinity of the groundwater and distance from the river. This violates a key assumption of vegetation index methods for estimating ET. The implications of these findings for arid-zone riparian ecohydrology and for remote sensing methods that assume either a constant daily evaporative fraction or rate of stomatal conductance will be discussed using saltcedar stands measured in the Cibola NWR on the lower Colorado River as a case study. Daily rates of saltcedar transpiration ranged from 1.6-3.0 mm/m2 leaf/day, while LAI varied over a narrower range, from 2.0 - 2.9. Differences in leaf-level transpiration were due to differences in stomatal conductance among sites. Sites close to the river had higher transpiration rates than sites further away, and sites with more saline water had lower leaf-level transpiration rates. Leaf-level transpiration rates were higher in June and July, when aquifers were closer to the surface, than in August and September, when water levels had dropped. High transpiration rates were associated with finer textured soil compared to plants growing in sandy soils. Low transpiration rates were manifested by moderate to severe midday depression of stomatal conductance and transpiration. These limitations constrained the rate of saltcedar ET to about 40% of ETo, and also reduced the accuracy of remote sensing estimates of ET, which assume a constant rate of stomatal conductance during midday.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner