S134 Intercomparison of Vertical Structure of Storms Revealed by Ground-based (NMQ) and Spaceborne Radars (CloudSat-CPR and TRMM-PR)

Sunday, 6 January 2013
Exhibit Hall 3 (Austin Convention Center)
Veronica Fall, National Weather Center Research Experience for Undergraduates 2012, Valparaiso, IN

Handout (666.5 kB)

Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W–band Cloud Profiling Radar (CPR) and Ku–band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S–band ground–based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground–based radar observations can help the identification of hydrometeors and improve the radar–based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD–based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multi–frequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold–season precipitation and its effect on the radar–based QPE. In all, the joint analysis of spaceborne and ground–based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner