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Lorenz equations for his strange attractor offer  a significant test 

 X·  =  P (Y – X)          Y·   =  – X Z + R X – Y             Z·   =  X Y – B Z 
 
Use X( i ) for i = 1 to 3 for the means of  [ X, Y, Z ]  
 
Use X( j ) for j = 4 to 9  covariance's: σ(1,1), σ(1,2), σ(1,3), σ(2,2), … σ(3,3) 
 
Use X( k ) for k = 10 to 19 third moments: T( 1,1,1), T(1,1,2), T(1,1,3), T(1,2,2), 
                                           T(1,2,3), T(1,3,3), T(2,2,2), T(2,2,3), T(2,3,3), T(3,3,3) 
 
For R < 24.74  there are fixed point solutions – however, even here  
                         there is initial explosive randomness 
 
For R ≥ 24.74  there are chaotic trajectories 
                         the initial explosive randomness is  more extreme 
 
The closure methodology is slightly different for the stable  
case versus the chaos situation; one must address both  
the initial explosive randomness  of the moments and the  
final solution for the moments in phase space 
 



Fig.1 R = 14 in Lorenz: [X1, X2, X3] = [0, 1,0] and initial variance of X1 to X3 = 0.1 
Sample size = 40,000. After initial wandering, X(3)  = theoretical value R - 1 = 13 
                  
 



Since Fixed Point solutions, all z-deviates go to zero, so 2nd, 3rd, and 4th  
moments with one or more 3’s as an index will → 0.0; thus: MC results are: 
σ(1,3) = σ(2,3)  = σ(3,3) = 0; and  σ(1,1) = σ(1,2)  = σ(2,2) = 28.32 
 
3rd moments  = 0, except T(1,1,1) =  T(1,1,2) =  T(1,2,2) = T(2,2,2)  = 142.723 
 
The MC results gave all 4th moments  = 0 except 
λ(1,1,1,1) =  λ(1,1,1,2) =  λ(1,1,2,2) = λ(1,2,2,2), =  λ(2,2,2,2) = 1521.1 
 
 
{ The full SD3 equations (with 4th moments & no assumptions on them)  
-- with the LHS of these equations = 0, produces the exact same results  
as the time averaged MC values (as shown in first talk) } 
 
 
The 4th moments are not “normal”; if they were then: e.g., λ(1,1,1,2) =   
3 σ(1,1) σ(1,2)  = 3 (28.32)2 = 2406.1;   but FF = λcalculated / λNormal 
 
 
4th moments are platykurtic with FF = 1521.1 / 2406.1 = 0.632 < 1 



The closure for the these fixed point solutions (e.g. R = 14) should be easy, 
and is; however the initial explosive randomness must be handled.  
 
The main idea is to let the physics drive the closure. 
 
The eddy-damped quasi-normal closure (sometimes used in the past and borrowed  
from turbulence theory) not needed here, and all 4th moments are platykurtic 
 
Since all the 4th moments  → the same FF value of 0.632 or 0.0, the normal  
form of all 4th moments are multiplied by this FF forcing coefficient.  
 
No damping factor is required on the 3rd moment equation containing the  
4th moment → 0.0 
 
However, the same damping coefficient (DK) is used on all 3rd moment equations  
with a non-zero 4th moment to cope with the initial randomness encountered.  
 
 
Values of (DK), used in T(i, j, k)˙ = ..... – (DK) T(i,j,k) , > 11.72 give correct answers.  
 
 
The value used was DK = 12, but values as large as 5 times that value  
gave the same answers 
 



MC (salmon) and SD3 (purple) agree, but even in this stable 
fixed point solution there is initial “explosive randomness”.  



Significant changes from the fixed point solution – now Z  ≠  R – 1  
and Z - deviates are very important; and the probability  
distributions of X(1) and X(2) are symmetric 



Moment Variable #    MC 
 Value          

   SD3 
 Value 

Moment Variable #    MC 
 Value          

   SD3 
 Value 

                     
    µ(1) 

    
   X(1)                  

  – . 001     .000 T(1,1,1)   X(10)     .060     .000 

         
    µ(2) 

    
   X(2) 

   – .001    .000 T(1,1,2)   X(11)     .060     .000 

             
    µ(3) 

    
   X(3) 

   
    23.55 

   
    23.55 

T(1,1,3)   X(12)    
   400.6 

   
   400.6 

                 
  σ(1,1) 

  
   X(4) 

  
    62.80 

   
    62.80 

T(1,2,2)   X(13)     .04     .000 

  
  σ(1,2) 

  
   X(5) 

 
   62.80 

  
   62.80 

T(1,2,3)  X(14)    
   198.2 

  
    198.2 

  
  σ(1,3) 

  
   X(6) 

   – .005    – .000 T(1,3,3)   X(15)     – .08     –.000 

  
  σ(2,2) 

  
   X(7) 

   
   81.20 

   
   81.20 

T(2,2,2)   X((16)      .009      .000 

  
  σ(2,3) 

                
   X(8) 

  .001  – .000 T(2,2,3)   X(17)    
   84.8 

     
   84.8 

  
  σ(3,3) 

  
   X(9) 

   
   74.34 

   
   74.34 

T(2,3,3)   X(18)   – .06  – .000 

T(3,3,3)   X(19)     132.4     132.4 

Table 1.  Calculated MC values and computed SD3 values from full equations for R = 28 
                 

Because of X1 & X2 symmetry all moments with odd # of 1’s and 2’s  → 0.0 
Time averaged moments evolve to agree with the full SD3 equations 



 Moment 
 

  Variable     
       # 

    M C  
   Value 

   SD3    
  Value 

  Moment   Variable 
       # 

     M C 
   Value 

    SD3 
  Value 

 
 λ(1,1,1,1) 

 
   X(20) 

 
  9060.1 

 
  9060.1 

 
 λ(1,1,3,3) 

 
   X(25) 

 
   6712.5 

 
   6713.0 

 
 λ(1,1,1,2) 

 
   X(21) 

 
  9060.2 

 
  9060.1 

 
 λ(1,2,2,2) 

 
   X(26) 

 
  13774 

 
  13774 

 
 λ(1,1,1,3) 

 
   X(22) 

 
    -0.14 

 
     0.0 

 
 λ(1,2,2,3) 

 
   X(27) 

 
  - 0.15 

 
     0.0 

 
 λ(1,1,2,2) 

 
   X(23) 

 
   10735 

 
  10735 

 
 λ(1,2,3,3) 

 
   X(28) 

 
   5021.5 

 
  5021.1 

 
 λ(1,1,2,3) 

 
   X(24) 

 
  -0.003 

 
     0.0 

 
 λ(1,3,3,3) 

 
   X(29) 

 
   - 1.2 

 
     0.0 

The  4th moments: X(20) and X(30) through X(34) are not in the SD3 equation set 
 
The calculated MC values and computed SD3 values match extremely well 
 

Table 2.  The five 4th moment values in red / blue are active in four 3rd  
               moment prediction equations. 



The number one rule in the closure exercise is to let the  
physics do the required damping where possible 
 
By the statistical symmetry of X(1) and X(2), all 3rd and 4th moments with an  
even # of 1’s and 2’s will be non-zero and likely quite large (we examine  
these 4th mmts. in  the next slide);  3rd and 4th moments with an odd # → 0.0 
 
We do not damp the 3rd moment prediction equations where those 3rd  
moments ultimately → 0.0  [ the 4th moments also → 0.0 in these eqs.] 
 
However, we will need a small damping term (the same one for each such  
3rd moment equation) to help control the degree of initial randomness 
 
All 4th moments which → 0.0 are initially set to their “normal”  
form [λ(i, j, k, l) = σ(i, j) σ(k, l) + σ(i, k) σ(j, l) + σ(i, l) σ(j, k) ] 
      
MC time averages might suggest initially setting them to 0.0 but they  
only → 0.0  
 
Still, these 4th moments can get quite large initially, then decline → 0.0 as  
dictated by the physics 



  Examine the 5 active 4th moments which occur in 4 prediction equ. 
--------------------------------------------------------------------------------------------------- 
T(1,1,3)· =   X(12)˙contains λ(1,1,1,2)    [ FF < 1 platykurtic    FF > 1 leptokurtic ] 
 

    λCalc = 9060.1 from MC;     λNormal = 3 σ(1,1) σ(1,2) = 11,831.5                            FF1 = 0.77 
 
T(1,2,3)· =  X(14)˙ contains λ(1,1,2,2) and λ(1,1,3,3) 
 
    λCalc = 10,737  from MC;   λNormal = σ(1,1) σ(2,2) + 2 σ(1,2) σ(1,2) = 12,987       FF2 = 0.83 
    
    λCalc = 6,713  from MC;    λNormal = σ(1,1) σ(3,3) + 2 σ(1,3) σ(1,3) = 4,668.6       FF3 = 1.44 
 
T(2,2,3)·  =  X(17)˙ contains λ(1,2,2,2) and λ(1,2,3,3) 
 
    λCalc = 5021.1 from MC;   λNormal = σ(1,2) σ(3,3) + 2 σ(1,3) σ(2,3) = 4668.6       FF4 = 1.08 
 
    λCalc = 13774  from MC;   λNormal = 3 σ(1,2) σ(2,2) = 15,298                                FF5 = 0.90 
 
T(3,3,3)· =   X(19)˙ contains λ(1,2,3,3) 
 
    λCalc = 5021.1  from  MC;  λNormal = σ(1,2) σ(3,3) + 2 σ(1,3) σ(2,3) = 4668.6      FF4 = 1.08 
 
 
Each of the above λ terms is replaced by FF(i) x (their normal form) which, 
of course, just makes them equal to their calculated value  
 
 



Closing the SD3 equations for chaos requires two  phases  
 
# 1: Compute a single damping term DK for those 3rd moments → 0 anyway  
to guide them through the explosive randomness phase; Use any small 
nominal value of damping for the active (non-zero) 3rd moments  
 
Optimize DK by  best results ( i.e., all moments that → 0.0 are exactly 0.0) 
after 4000 iterations (value was 16.8) using DK1 through DK5 = 6.0  
 
# 2: Compute unique damping terms DK1 through DK4 for each of the four  
3rd moment equations – computed from all terms in the equations  
(including 1.2*FF(i)  for the five active 4th moments) to make the time  
tendency balance { LHS = 0 } (terms which → 0 are 0.0  by phase 1) 
------------------------------------------------------------------------------------------------------------------- 
Example: time tendency of T(1,1,3) = X(12) 
X(12)˙ =  0 with all the terms set to what the MC & SD3 equations provided. 
           = … - 9060 … + λ(1,1,1,2) = 0        ; because λ(1,1,1,2) = 9060 
Fix by creating an imbalance! 
Fix by increasing λ by 1.2 λ and add a damping term to RHS,  then:  
 
X(12)˙ = … - 9060 + (1.2) (9060) – DK1 X(12) = 0 
Therefore,  DK1 = ( 0.2) (9060) / X(12) = 1812. / 400.64 = ~ 4.523 
 



Values of the damping coefficients at each stage of closure: 
(using values X(1),  X(12), X(14), X(17) and X(19) as examples at 4000 
 iterations) 
 
PHASE  DK   DK1     DK2      DK3      DK4      X(1)     X(12)     X(14)     X(17)     X(19) 
                      X(12)    X(14)    X(17)    X(19)     
---------------------------------------------------------------------------------------------------- 
1.1      5.45     6.0        6.0        6.0        6.0     - 3.1       250.6     138.4    144.0     294.2 
 
1.2    16.80     6.0        6.0        6.0        6.0       0.0       379.0     193.1    111.7     284.9 
 
2.1    16.80   4.523      6.0        6.0        6.0  - 6x10-10    400.2     196.9    114.8     289.2 
 
2.2    16.80   4.523   4.058       6.0        6.0   - 3x10-9    401.3     200.2      96.4     293.3 
 
2.3    16.80   4.523   4.058    8.796       6.0  - 2x10-10    400.6     198.2      84.8     290.9 
 
2.4    16.80   4.523   4.058    8.796    22.75 - 2x10-11    400.6     198.2      84.8     132.4 
 



Figure 4.  Both Monte Carlo and SD3 calculations have Z = X(3) = 23.55, and 
                  and the initial randomness has been captured  



Figure 6. MC and SD3 reach correct value of T(3,3,3) of 132.4, the  
enormous explosive randomness is captured “virtually” perfectly 



The first 200 iterations – the initial randomness of T(1,3,3); the final 
value is 0.0  



Any bounded and dissipative  system of equations, like the  
Lorenz set, can be closed with a similar procedure: flooding  
the attractor with a large sample size, then performing a  
suitable time averaging 
 
Closure is more complicated with a system of nonlinear  
cubic equations 
 
e.g.   Xi

˙  =   …   Xj Xk Xl  … 
 
Here the general form for the n-th moment about the mean is: 
 
fn˙ = n [ 3 µ fn+1 + 3 µ (2) fn – 3 µ f2 fn-1 – f3 fn-1 + fn+2 ] 
 
where the general form for the nonlinear quadratic case  
was simply: 
 
 fn˙ = n [ 2 µ fn  – f2 fn-1 + fn+1 ] 
 
 





Lorenz set: R = 28; The full 16,000 iterations 



     This is deterministic run from iteration 0 to 200 



                   This is deterministic run from iteration 100 to 1450  



                               This is from iteration 1450 to 1900 



                         This from iteration 2000 to 3000 



Lorenz set: R = 28; the final 8000 iterations of 16,000 



     This is deterministic run from iteration 0 to 200 



The first 200 iterations – the initial random variance of X(3) 



The first 200 iterations – the initial randomness of T(1,3,3); the final 
value is 0.0  



                         Details of closure (an example) 
X(12)˙ =  0 with all the terms set to what the SD3 equations provided. 
           = … - 9060 … + λ(1,1,1,2) = 0        ; because λ(1,1,1,2) = 9060 
Fix by adding a damping term to RHS and increase λ by 1.2λ; then  
 
X(12)˙ = … - 9060 + (1.2) (9060) – DK1 X(12) = 0 
 
Therefore,  DK1 = ( 0.2) (9060) / X(12) = 1812. / 400.64 = ~ 4.523 
 
Therefore in the beginning the chaotic physics will drive X(12) perhaps crazily,  
but it will eventually settle down to its derived value 
--------------------------------------------------------------------------------------------------------------- 
X(14)˙ = …- 4022 + … [λ(1,1,2,2) – λ(1,1,3,3)]  = 0 because  where the  
              λ difference = 10,735 – 6713 = 4022 
Fix by adding a damping term and increase both λ’s by factor of 1.2 
 
Therefore, DK2 = (0.2) (4022) / X(14) = 804.4 / 198.24 = 4.0577 
 
One wants λ(1,1,2,2) > λ(1,1,3,3). The kurtosis is of the two λ’s is not important. 
[ Defined as B2 = u4 / (u2)2 -- in a normal distribution B2 = 3 and it is mesokurtic,  
platykurtic or leptokurtic – according as B2 = 3, <  3, or > 3. The distribution is  
flatter about the mean if platykurtic – think of the flat bill of a platypus 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

