Dependence of mean radiant temperature on 3D radiant flux densities: the example of urban quarters in a mid-size Central European city during summer heat

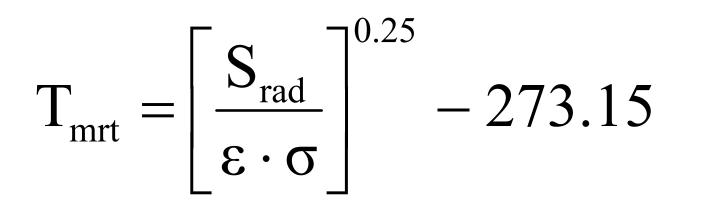
Helmut Mayer and Hyunjung Lee

BURG

Albert-Ludwigs-University of Freiburg, Germany

Chair of Meteorology and Climatology

- main problem for urban planning in Central European cities: increasing summer heat due to regional climate change \rightarrow to develop, apply and validate mitigation methods
- relevance for citizens by methods and results from urban human-biometeorology
- thermal stress for citizens quantified by thermal indices like PET (not T_a or UHI!) strongest outdoors in summer
- most crucial variable: radiant exchange in terms of T_{mrt} -



- numeric simulation by models, e.g. -
 - SOLWEIG
 - ENVI-met
 - RayMan
- experiments -
 - globe thermometer
 - six-directional method

measuring short- and long wave radiant flux densities

- from the four horizontal cardinal directions (E, S, W, N)
- as well as from the upper and the lower hemisphere

T_{mrt}: mean radiant temperature (°C)

I _{mrt}

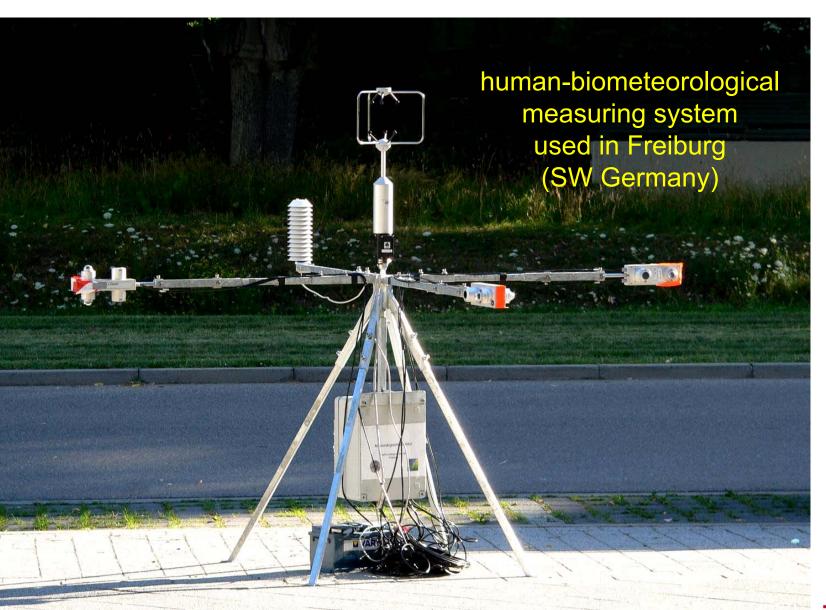
S_{rad}: total of all absorbed radiant flux densities (W m⁻²)

- ϵ : emissivity of the human body (0.97)
- σ : Stefan-Boltzmann constant (5.67 · 10⁻⁸ W m⁻² K⁻⁴)

$$\mathbf{S}_{\text{rad}} = \sum_{i=1}^{6} \mathbf{W}_{i} \cdot \left(\boldsymbol{\alpha}_{k} \cdot \mathbf{K}_{i} + \boldsymbol{\alpha}_{1} \cdot \mathbf{L}_{i} \right)$$

S_{rad}: total of all absorbed radiant flux densities (W m⁻²)

K_i: short-wave radiant flux densities


S_{rad}

- L_i: long-wave radiant flux densities
- α_k : short-wave absorption coefficient (0.7)
- α_{l} : long-wave absorption coefficient (0.97)
- W_i: angle factors (percentage of K_i and L_i, received by the human body in each direction i)

six-directional method

Chair of Meteorology and Climatology

BURG **FREN**

- 1-d experiments (7 a.m. 9 p.m.) -
 - by use of specific
 - human-biometeorological measuring systems
 - at 90 different sites in Freiburg (mid-size city in SW Germany) mostly street canyons of various designs
 - during typical Central European summer weather
 - from 2007-2010
- results are aggregated to mean values over 10-16 CET typical timescale for daytime heat in Central European cities

results (I)

- linear regressions: $y = a \cdot x + b$
 - x: sky view factor for the

southern part of the upper half space (SVF₉₀₋₂₇₀)

У	X	R ²
T _a (°C)	SVF ₉₀₋₂₇₀ (%)	0.002
T _{mrt} (°C)	SVF ₉₀₋₂₇₀ (%)	0.774
PET (°C)	SVF ₉₀₋₂₇₀ (%)	0.332

results (II)

- linear regressions: $y = a \cdot x + b$
 - x: short-wave radiant flux densities

absorbed by the human-biometeorological reference person

У	X	R ²
T _{mrt} (°C)	K↓ _{abs} (W/m²)	0.898
T _{mrt} (°C)	K _{hor,abs} (W/m²)	0.900
T _{mrt} (°C)	K _{vert,abs} (W/m²)	0.902
T _{mrt} (°C)	K* _{abs} (W/m²)	0.910

results (III)

- linear regressions: $y = a \cdot x + b$
 - x: long-wave radiant flux densities

absorbed by the human-biometeorological reference person

У	X	R ²
T _{mrt} (°C)	L↓ _{abs} (W/m²)	0.021
T _{mrt} (°C)	L↑ _{abs} (W/m²)	0.755
T _{mrt} (°C)	L _{hor,abs} (W/m²)	0.400
T _{mrt} (°C)	L _{vert,abs} (W/m²)	0.391
T _{mrt} (°C)	L* _{abs} (W/m²)	0.402

BURG

- linear regressions: $y = a \cdot x + b$
 - y: T_a, T_{mrt}, PET (averaged over 10-16 CET) $x = SVF_{90-270}$
 - \rightarrow highest R² (0.774) for y = T_{mrt}
 - $y = T_{mrt}$ (10-16 CET)

x: absorbed short-wave radiant flux densities (10-16 CET)

- \rightarrow highest R² (0.910) for x = K^{*}_{abs}
- $y = T_{mrt}$ (10-16 CET)

x: absorbed long-wave radiant flux densities (10-16 CET)

→ highest R² (0.755) for x = L \uparrow_{abs}

- linear regressions: $T_{mrt} = a \cdot x + b$
 - ➔ higher R² values for different K_{abs} flux densities (x) in contrast to different L_{abs} flux densities (x)
- multiple regression:

$$T_{mrt} = 0.113 \cdot K_{abs}^* + 1.535 \cdot L_{abs}^* - 12.6$$

→ $R^2 = 0.977$

- linear regressions: $T_{mrt} = a \cdot x + b$

 \rightarrow higher R² values for different K_{abs} flux densities (x) in contrast to different L_{abs} flux densities (x)

- multiple regression:

 $T_{mrt} = 0.113 \cdot K_{abs}^* + 1.535 \cdot L_{abs}^* - 12.6$ \rightarrow R² = 0.977

 $T_{mrt} = 0.661 \cdot K \downarrow_{abs} + 1.359 \cdot L \uparrow_{abs} - 6.7$ \rightarrow R² = 0.941

 T_{mrt} (°C); $K\downarrow_{abs}$, K^*_{abs} , $L\uparrow_{abs}$ (W/m²): mean values over 10-16 CET

