
Using Reanalysis Data for the 
Prediction of Seasonal Wind 
Turbine Power Losses Due to 

Icing
Daniel Burtch - University of North Dakota !

Department of Atmospheric Sciences!
Dr. Gretchen Mullendore - University of North Dakota 

Dr. Brandon Storm - EAPC Wind Energy

!1

Special thanks to Ed Rekkedal and Minnkota Power Cooperative Inc.



Why Should We Care?
• Icing causes changes in the 

aerodynamics of turbine 
blades, thereby reducing 
energy output. 

• In cold climate areas 
(Baring-Gould et al. 2012) 
reduced energy output due 
to icing can be significant. 

• Long-term feasibility, siting, 
and financing studies of new 
turbine locations require 
estimates of % annual 
losses due to icing.
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What’s Wrong With What  
We Use Now? 

• Typically, a constant value, as a percent of the 
expected annual energy production, is used for 
future estimates of icing losses (industry 
method**). 

• The reduction in energy output is highly variable 
between seasons, locations, and even icing 
events. 

• Need to develop a method to more accurately 
predict icing losses and compare with the typical 
constant value.
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Icing Determination

• Ideally, liquid water content (LWC) and droplet 
size distribution (DSD) used with temperature and 
wind speed. 

• LWC and DSD are difficult to measure in 
operational environments 

• Relative humidity (RH) to be used as a proxy.
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Icing Determination
• Fikke et al. (2007) use RH > 95 % and T < 0 °C. 

• Baring-Gould et al. (2012) suggest that using a 
high RH can overestimate frequency of icing 
events. 

• Cattin et al. (2008) showed the calculation of RH 
where saturation vapor pressure is determined 
with respect to ice for low temperatures, improved 
icing detection by 10%.
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Study Location
• 900-kW turbine located in 

Petersburg, ND. 

• Operational since July 2002. 

• Meteorological tower with 
anemometers at three 
heights. 

• Four MERRA grid points 
surrounding turbine location.
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Methods to Determine Icing
• Three methods of determining required 

atmospheric variables at the turbine location and 
height.

Method Wind Speed! Specific 
Humidity Temperature

1
MCP Analysis 

+ 
Terrain Model

Interpolated Interpolated

2
MCP Analysis 

+  
Terrain Model

10 m Value 10 m Value

3
MCP Analysis 

+ 
Terrain Model

Boundary 
Layer 

Similarity

Boundary 
Layer 

Similarity

!7



Methods to Determine Icing
• Three methods of determining required 

atmospheric variables at the turbine location and 
height.

Method Wind Speed! Specific 
Humidity Temperature

1
MCP Analysis 

+ 
Terrain Model

Interpolated Interpolated

2
MCP Analysis 

+  
Terrain Model

10 m Value 10 m Value

3
MCP Analysis 

+ 
Terrain Model

Boundary 
Layer 

Similarity

Boundary 
Layer 

Similarity

!7



MCP/Terrain Model

• Measure-Correlate-Predict (MCP) 

• Linear regression of two-year anemometer 
data to fit MERRA data. 

• Produces a longer-term wind speed dataset. 

• Industry software used to translate to turbine 
location and height using terrain flow model.
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Determining Observed Icing Losses
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Wind speed at turbine height
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Estimated Energy Production
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Observed Less than 80% of Estimated?

Difference is observed icing loss.
Sum over entire season.
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Determining Predicted Icing Losses
• If calculated RH is 

greater than threshold 
and temperature < 0 
°C, assume icing. 

• Wind speed converted 
to energy using turbine 
power curve, and 
assume all is lost due to 
icing. 

• Sum over entire season 
and determine 
percentage loss for 
each RH.
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Calculated RH greater than threshold?

T < 0 °C

RH Threshold varies from 90% to 105%
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For Season ending March 2010
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Average for all eight seasons -  
Oct-Mar, 2002-2010

97.7 %



Testing of Methods

• Three winter seasons (2010 - 2013). 

• Include remaining six months of ice-free energy 
production data to generate observed and 
predicted annual loss due to icing.
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How Did We Do?
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Observed
Industry Method

Provided by EAPC, 
calculated using 
standard industry 

practices.

Training Years Test Years

A
nn

ua
l L

os
s 

D
ue

 to
 Ic

in
g 

(%
)



2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
2

4

6

8

10

12

14

16

Year Ending

An
nu

al
 L

os
s 

D
ue

 to
 Ic

in
g 

(%
)

 

 
Observed
Industry Method
Interpolation Method
Surface Value Method
BL Similarity Method

How Did We Do?

!14

A
nn

ua
l L

os
s 

D
ue

 to
 Ic

in
g 

(%
)



2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
2

4

6

8

10

12

14

16

Year Ending

An
nu

al
 L

os
s 

D
ue

 to
 Ic

in
g 

(%
)

 

 
Observed
Industry Method
Interpolation Method
Surface Value Method
BL Similarity Method

How Did We Do?

!14

A
nn

ua
l L

os
s 

D
ue

 to
 Ic

in
g 

(%
)



2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
2

4

6

8

10

12

14

16

Year Ending

An
nu

al
 L

os
s 

D
ue

 to
 Ic

in
g 

(%
)

 

 
Observed
Industry Method
Interpolation Method
Surface Value Method
BL Similarity Method

How Did We Do?
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Method
Average Absolute 
Difference From 

Observed
Test 

Years
Training 

Years
Interp 2.62% 2.16%

Surface 
Value 2.51% 1.93%

BL 
Similarity 2.13% 1.87%

Industry 
Method 6.07% 5.42%



How Did We Do?

Eleven−Year Average Training Year Average Test Year Average0

50

100

150

200

250

300

350

An
nu

al
 L

os
se

s 
Du

e 
to

 Ic
in

g 
(M

W
h)

 

 
Observed
Industry Method
Interpolation Method
Surface Value Method
BL Similarity Method

!15

A
nn

ua
l L

os
se

s 
D

ue
 to

 Ic
in

g 
(M

W
h)



How Did We Do?

Eleven−Year Average Training Year Average Test Year Average0

50

100

150

200

250

300

350

An
nu

al
 L

os
se

s 
Du

e 
to

 Ic
in

g 
(M

W
h)

 

 
Observed
Industry Method
Interpolation Method
Surface Value Method
BL Similarity Method

!15

Assume $30/MWh and 50 
turbine wind farm:

OBS - $465,000 
IND - $182,000 
BL - $372,000
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Regional Applicability of Results!

• Preliminary analysis of second location without 
training data but using same RH thresholds.
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• Provided the data exists, these methods could be 
applied to any location and with dense enough 
network, could develop icing climatology maps.
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Comparison of In−House Methods to the Industry Method For Three Yearly Averages
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Conclusions
• Using industry method (constant value) for icing loss: 

• Severely under-estimates % annual losses (over 6% 
difference from observed) 

• Predicted energy lost due to icing is ~ 60% lower than 
observed. 

• Under-predicting financial losses (large wind farms)! 

• Reanalysis methods are better predictors of icing losses than 
the constant value. 

• Difference from observed % annual losses is 2.1% - 2.7%. 

• Predicted energy lost due to icing 16% to 19% lower than 
observed.
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