

Using Reanalysis Data for the Prediction of Seasonal Wind Turbine Power Losses Due to Icing

Daniel Burtch - University of North Dakota Department of Atmospheric Sciences Dr. Gretchen Mullendore - University of North Dakota Dr. Brandon Storm - EAPC Wind Energy

Special thanks to Ed Rekkedal and Minnkota Power Cooperative Inc.

Why Should We Care?

- Icing causes changes in the aerodynamics of turbine blades, thereby reducing energy output.
- In cold climate areas (Baring-Gould et al. 2012) reduced energy output due to icing can be significant.
- Long-term feasibility, siting, and financing studies of new turbine locations require estimates of % annual losses due to icing.

UND

What's Wrong With What We Use Now?

- Typically, a constant value, as a percent of the expected annual energy production, is used for future estimates of icing losses (industry method**).
- The reduction in energy output is highly variable between seasons, locations, and even icing events.

 Need to develop a method to more accurately predict icing losses and compare with the typical constant value.

Icing Determination

- Ideally, liquid water content (LWC) and droplet size distribution (DSD) used with temperature and wind speed.
 - LWC and DSD are difficult to measure in operational environments

• Relative humidity (RH) to be used as a proxy.

Icing Determination

- Fikke et al. (2007) use RH > 95 % and T < 0 $^{\circ}$ C.
- Baring-Gould et al. (2012) suggest that using a high RH can overestimate frequency of icing events.
- Cattin et al. (2008) showed the calculation of RH where saturation vapor pressure is determined with respect to ice for low temperatures, improved icing detection by 10%.

Study Location

- 900-kW turbine located in Petersburg, ND.
- Operational since July 2002.
- Meteorological tower with anemometers at three heights.
- Four MERRA grid points surrounding turbine location.

Study Location

 900-kW turbine located in Petersburg, ND.

- Operational since July 2002.
- Meteorological tower with anemometers at three heights.
- Four MERRA grid points surrounding turbine location.

Study Location

 900-kW turbine located in Petersburg, ND.

- Operational since July 2002.
- Meteorological tower with anemometers at three heights.
- Four MERRA grid points surrounding turbine location.

Methods to Determine Icing

 Three methods of determining required atmospheric variables at the turbine location and height.

Method	Wind Speed	Specific Humidity	Temperature	
1	MCP Analysis + Terrain Model	Interpolated	Interpolated	
2	MCP Analysis + Terrain Model	10 m Value	10 m Value	
3	MCP Analysis + Terrain Model	Boundary Layer Similarity	Boundary Layer Similarity	

UND

Methods to Determine Icing

 Three methods of determining required atmospheric variables at the turbine location and height.

Method	Wind Speed	Specific Humidity	Temperature
1	MCP Analysis + Terrain Model	Interpolated	Interpolated
2	MCP Analysis + Terrain Model	10 m Value	10 m Value
3	MCP Analysis + Terrain Model	Boundary Layer Similarity	Boundary Layer Similarity

UN

MCP/Terrain Model

- Measure-Correlate-Predict (MCP)
 - Linear regression of two-year anemometer data to fit MERRA data.
 - Produces a longer-term wind speed dataset.

• Industry software used to translate to turbine location and height using terrain flow model.

Wind speed at turbine height

UND

Determining Predicted Icing Losses

Determining Predicted Icing Losses

Calculated RH greater than threshold?

RH Threshold varies from 90% to 105%

Determining Predicted Icing Losses

Best RH Threshold?

Best RH Threshold?

For Season ending March 2010

Best RH Threshold?

Average for all eight seasons - Oct-Mar, 2002-2010

Testing of Methods

- Three winter seasons (2010 2013).
- Include remaining six months of ice-free energy production data to generate observed and predicted **annual** loss due to icing.

UND

16 Observed Industry Method Interpolation Method Surface Value Method	Method	Average Absolute Difference From Observed		
12 -		Test Years	Training Years	
10-	Interp	2.62%	2.16%	
8	Surface Value	2.51%	1.93%	
6—	BL Similarity	2.13%	1.87%	
4	Industry Method	6.07%	5.42%	
2003 2004	2005 2006	2007 2008 Year Ending	2009 2010	2011 2012 2013

Assume \$30/MWh and 50 turbine wind farm:

OBS - \$465,000 IND - \$182,000 BL - \$372,000

Regional Applicability of Results

• Preliminary analysis of second location without training data but using same RH thresholds.

 Provided the data exists, these methods could be applied to any location and with dense enough network, could develop icing climatology maps.

Conclusions

- Using **industry method** (constant value) for icing loss:
 - Severely under-estimates % annual losses (over 6% difference from observed)
 - Predicted energy lost due to icing is ~ 60% lower than observed.
 - Under-predicting financial losses (large wind farms)!
- Reanalysis methods are better predictors of icing losses than the constant value.
 - Difference from observed % annual losses is 2.1% 2.7%.
 - Predicted energy lost due to icing 16% to 19% lower than observed.

