

A Case Study on Ship Tracks in the Bay of Biscay

Modeling Approach

COSMO 4.14

Cloud Microphysics:	Seifert and Beheng 2006 (2-moment scheme)	
Aerosol Microphysics:	Vignati at al 2007 (7 modes for SU,BC, OC, SS, DU)	
Satellite Simulator:	Bodas-Salcedo et al 2011 (COSP Simulator Package)	

Modeling Approach

COSMO 4.14

Cloud Microphysics:	Seifert and Beheng 2006 (2-moment scheme)	
Aerosol Microphysics:	Vignati at al 2007	
	(7 modes for SU,BC, OC, SS, DU)	

Satellite Simulator:

Bodas-Salcedo et al 2011 (COSP Simulator Package)

Resolutions: nested:	12 km x 12 km x 50 - 150 m (in PBL) 2 km x 2 km x 50 - 150 m (in PBL)	12-km
Initialisation Time:	26.01.2003 at 00 UTC	
BC & IC (dyn):	Era-interim (Simmons et al. 2007)	
BC & IC (aerosol):	ECHAM5-HAM (Folini et al. 2011)	
Emissions (no ships):	AEROCOM (Dentener et al. 2006)	10 50

Specified Ship Emissions – Cargo Ships

Grid Distribution

Mass fluxes (Hobbs et al 2000, Petzold et al 2008)

BC [g/s]	OC [g/s]	SO2(g) [g/s]	SO4 [g/s]
0.9	2.7	40.0	2.3 + (2.5% x [SO2])

Scaled Emission Mass fluxes from Literature by Factor 10

Ship Speed: 10 ms⁻¹

Size Distributions (Righi et al 2011)

	Fresh	Aged
D [µm] AIT/ACC	0.03/-	0.058/0.31
% AIT/ACC	100/0	96/4

Emission height: 150 m ASL

03.02.2014 AMS Meeting A

Results

Simulation with 6 sea-going cargo ships:

3 ships started at Jan 26 03 UTC

3 ships started at Jan 26 09 UTC

Animation from Jan 26 00 UTC until 12 UTC

Results

Simulation with 6 sea-going cargo ships:

3 ships started at Jan 26 03 UTC

3 ships started at Jan 26 09 UTC

Observe increased CDNC along ship's routes that started at 03 UTC

Animation from Jan 26 00 UTC until 12 UTC

Scaling of Emission Flux

03.02.2014

AMS Meeting Ann

Anna Possner

- Horizontal extent (length and width)
 of ship tracks realistic
- Increase of optical thickness along ship tracks agrees with observation

- Horizontal extent (length and width) of ship tracks realistic
- Increase of optical thickness along ship tracks agrees with observation
- Underestimation of cloud optical thickness along cloud band forming downwind of emission zone

Preliminary Conclusions

- We simulate track-like structures of increased cloud optical thickness of realistic magnitude using a scaling of the ship emission mass flux by a factor 10.
- We observe a thickening of the cloud band found downwind from the emission zone, although the effect appears underestimated in comparison to the MODIS observation.
- We find a clear dependency of the simulated cloud optical thickness on the aerosol size and number concentration at the point of emission.