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Introduction

Thunderstorm outflow research has primarily focused on the role of boundary
interactions in convective initiation and tornadogenesis. However, the wildland
fire community has a unique demand for understanding outflow boundaries.
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Fire managers are aware that outflow winds can present challenges to fire = Divergence signatures
suppression and safety in wildland fire operations. Subtle changes in wind « Descending dBZ cores
speed and direction can have large and potentially devastating consequences _

to aerial and ground firefighting operations. This paper reviews empirical and " Rotation aloft
theoretical studies on thunderstorm downdrafts and resultant outflow = Radar fine lines
boundaries and places this knowledge within the context of wildland fire | -z .

management. Case studies are presented to illustrate the impacts of outflow

boundaries, followed by a review of wildland fire operations. Subsequently, |5 A
forecasting methodologies and best practices for fire weather meteorologists |3 -zso} ;:5,
will be discussed. Finally, recommendations will be provided to improve |3 it
communication between fire meteorologists and fire managers to address the ¢ /- %t‘%
~275 '

challenges posed by imminent threats associated with outflow winds.
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Motivation: Microscale Forecasting of Low
Frequency-High Impact Events
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= Low frequency- High Impact: Downdrafts inherently not low frequency,
occur on all precipitating storms. However, situations that will negatively
impact fire personnel are low frequency.

= What tools are available to fire weather and incident meteorologists to
better predict the occurrence and strength of downdrafts and outflow

boundaries? ' 1284)
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Vertical Momentum_ Equation (Wakimoto 2001)

= Inviscid vertical momentum equation. Terms on RHS:

= \ertical gradient of the perturbation pressure- generally small in non- .
supercellular thunderstorms

= Thermal buoyancy
= Perturbation pressure buoyancy
= Condensate loading

= Entrainment of environmental air (not included in the above equation,
may also contribute to the strength of the downdraft [Wakimoto 2001])
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= Thermodynamic profile
DCAPE > 1000 J kgt found to correspond to strong downdrafts
more and Wicker 1998, also see case study sidebar)

_ow level RH and outflow strength, competing ideas:
= Wakimoto (2001)- Stronger downdraft with higher low-level RH,

temperature difference between parcel and environment

Fig. 1. Above Left. Microburst
pattern. Note Divergence
signature. (Hjelmfelt 1988)

Characteristics of Downdrafts
and Resultant Outflow Boundaries

Fig. 2. Above right. KFSD
velocity image showing wet
microburst divergence. Note
parallels to Fig. 1.

Fig. 3 Middle left. Microburst
life cycle showing midair and
surface microbursts (Hjelmfelt
1988; after Wilson et al.

Fig. 4. Bottom left. Schematic
gust front cross section
(Droegemeier and Wilhelmson

increased virtual

=  Markowski and Richardson (2009)- Stronger cold pools with lower low-level RH

Mid-level dryness near melting layer (Proctor 1989)

= Thunderstorm microphysics

Droplet size as function of evaporation rate, sub-cloud lapse rate
= Sublimation vs. evaporation alone

Presence of hail, graupel,

or snow (Srivastava 1987)

= Importance:

= Use of Virtual Temperature- Downdraft intensity may increase with
higher RH at lower levels by increasing virtual temperature differences
between the parcel and the environment (Srivastava 1985)

= Phase Changes- melting and sublimation (Srivastava 1987)

= Microphysical details of condensate loading: shape, size, downdraft
speed, and intensity can affect downdraft

= Entrainment- Virtual Temperature effects, low-level RH
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Figs. 5 and 6.
Denver CO
soundings for
1100Z and 2300Z,
respectively, for five
different dry
microburst days.
(Wakimoto 1985)

Case Studies

New Underwood RX

= Successful forecast and prescribed burn implementation
= Light east-northeast winds would have impacted I-90
= Gust front changed winds to SW providing good burning conditions

F|g 4. KUDX velocity (top) and reflect|V|ty (bottom) for times 18: 09 18 30 and 18 48 UTC respect|vely Arrow denotes
location of burn. Note radar fine line depicting wind shift.

. Whlte Draw Fire— MAFFS 7 Incident, 1 July 2012

Caused by localized microburst, 4 fatalities
= DCAPE of 1994 ] kg1
= Noted descending reflectivity core and misoscale rotation aloft
= Pulse-type convection in dry environment

e 200

72662 RAP Rapid City
100

1EEI 1

300 |asdd

400 - .‘ —

000

600

N
700 [ralmd
*y

800

Vakel AN A AV
- Z SN LEEAN Vil 7
VT AN SN A . S i 7
| gﬂﬂ .-’Jrﬂf %‘k ﬁf“x }".c"f A”w H‘-. ﬁ’"f ill‘l. .-"f .-""Ilr .-"IIJIr A
1

EENER A IR AN

aLaT 44.05
SLOM -103.21
SELY 1029.
SHOW -4.16
LIFT -4.58
LFTY -5.37
SWET 326.9
kIMA 400
CTOT 1310
VTOT 37.10
TOTL 56.20
CAaPE 1381,
CaPY 1430,
CING  -169.
CIMY =105,
EGLY 132.7
EQTY 132.7
LFCT 573.0
LFCW 5831
BRCH 36.37
BRCW 33.23
LCLT 2&0.5
LCLP B57.7
MLTH 316.5
PMLMR 1015
THCE. 5874,
FWAaT 2316

Fig. 5. KUDX reflectivity for noted times. White oval denotes fire location. View is to the Northwest. Fig. 6. KUNR

sounding for 00Z 2 July 2012.

= Yarnell Hill Fire- 19 GMIHC Fatalities

=  Gust front moved across fire front
. WeII predlcted t|m|ng was poorly communicated
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F|g 7 KSFX reerct|V|ty W|th apprOX|mate fire location circled. Fig. 8. KFGZ sounding from O0UTC on 1 July 2013.
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Impacts to Fire Operations and Management

= Risk vs. Reward
= High impact operations with high impact results

= (QOperating in an unknown atmospheric environment
= Role of fire weather forecasters and Incident Meteorologists (IMETSs)

= Suddenness of changes
=  Qutflow/microbursts happen on short time scales

= Relationship to escape routes and safety zones

= Communicating uncertainty
= IMETs need ability to convey uncertainty

= Applications to fire operations: Plan A vs. Plan B

= Aviation vs. Ground Concerns

= Movement of resources based on wind potential
= Aircraft performance characteristics

Improving Forecast Methodology
= Forecast funnel- early identification of “problem of the day”

= Nowcasting and situational awareness

= Immediate recognition of conducive environments
= Soundings, DCAPE, low level RH

= High resolution models
= HRRR has shown ability to predict strong gust fronts; qualitative use

= Three dimensional radar perspectives
= Midlevel rotation couplets
= Descending reflectivity cores (Roberts and Wilson 1989)

= QOperational use of polarimetric radars
= Note droplet shape size, phase

= Onsite visual indicators
= \irga, precipitation curls

= Field tools
= Mobiles, RadarScope, BUFKit

Concluding Thoughts and Research Questions

= Prompt identification of conducive conditions for
convectively-driven winds is necessary for wildland fire
managers.

= Can a suitable link be found between downdraft strength and outflow
wind speeds?

= Does aviation management need to reassess flight policy around
thunderstorms in particularly dangerous conditions?

= How can meteorologists ensure their forecasts are properly understood?
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