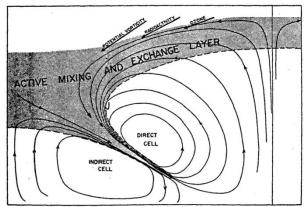
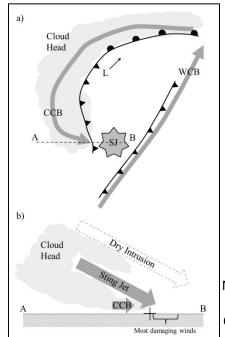
The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

Emily Berndt¹, Bradley Zavodsky², Gary Jedlovec², and Nicholas Elmer³

¹NASA Postdoctoral Program MSFC, Huntsville, AL ²Short-term Prediction Research and Transition Center NASA/MSFC, Huntsville, AL ³University of Alabama in Huntsville, Huntsville, AL


94th Annual AMS Meeting 26th Conference on Weather Analysis and Forecasting 22nd Conference on Numerical Weather Prediction



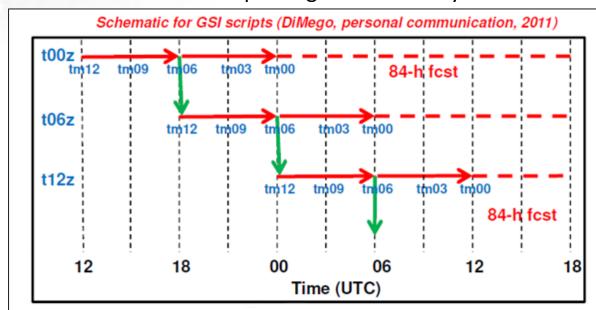
The Problem

- Could improved model representation of stratospheric air and tropopause folding improve non-convective wind forecasts and high wind warnings?
- Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging nonconvective wind events
- The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated nonconvective winds
- Study utilizes:
 - AIRS: Atmospheric Infrared Sounder
 - IASI: Infrared Atmospheric Sounding Interferometer
 - CrIMSS: Cross-track Infrared and Microwave Sounding Suite

(Danielson 1968)

(adapted from Martínez-Alvarado et al. (2010) and Clark et al. (2005).

Background on Data Assimilation


- Currently, AIRS and IASI radiances are assimilated in the operational NAM
- Radiance data are restricted to cloud-free fields of view
- Cloud clearing, error checking, and data thinning limit the number of radiances assimilated
- Hyperspectral IR profiles can be assimilated in some partly cloudy scenes and can be assimilated as RAOBs (and be assigned RAOB error) without the use of a computationally expensive radiative transfer model

Experiment Setup

- Developmental Testbed Center Gridpoint Statistical Interpolation System (GSI) v. 3.0 and Advanced Research Weather Research and Forecasting (ARW) Model v. 3.3
- Forecast cycling mimicking operational NAM
 - Observations assimilated at 3-hr intervals, starting 12 hours before the forecast initialization time
 - Cycled assimilation has a cumulative effect on improving the final analysis fields
- Initialized with GFS data
- 12-km domain with
 35 vertical levels
- Scheme choices follow operational NSSL WRF

Experiment Setup

Type

AMSU-A

MHS

HIRS

Sounder

AIRS, IASI,

CrIMSS

Control

N15, N18,

N19, MetOp-

A, Aqua

N18, N19,

MetOp-A

N17, N19,

MetOp-A

GOES13,

GOES15

Control Run Data Assimilation:

- Satellite: AMSU, HIRS, MHS, GOES Sounder, GPSRO, radar winds
- Conventional Observations in NCEP prepbufr files

Experiment Run Data Assimilation:

- Same as of
- Plus AIRS and moist

	CI IIVI33		profiles
control	Conventional	Sondes,	Sondes,
		Aircraft,	Aircraft,
S, IASI, CrIMSS temperature		SatWinds,	SatWinds,
•		RadWinds,	RadWinds,
sture profiles		GPSRO,	GPSRO,
		METAR,BUOY	METAR,BUOY
npared results to 32-km			
rth American Regional			
vsis interpolated to 12-km			

Com Nor Reanalysis interpolated to 12-km

Experiment

N15, N18,

N19, MetOp-

A, Aqua

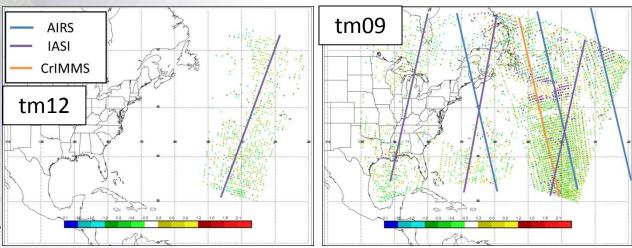
N18, N19,

MetOp-A

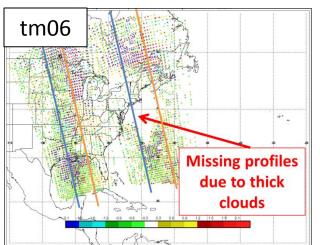
N17, N19,

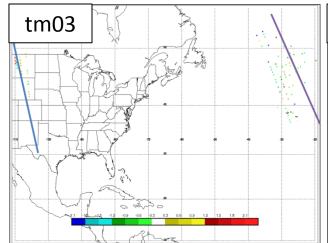
MetOp-A

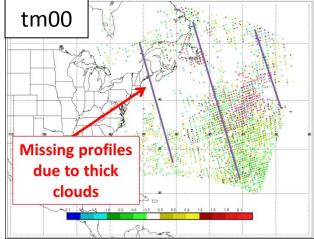
GOES13,


GOFS15

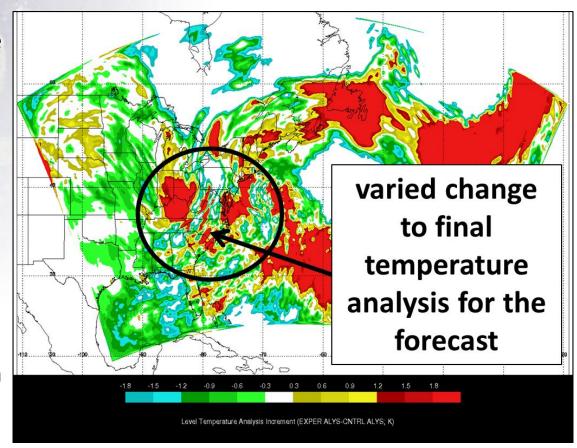
L2 T and q


profiles Sondes,


GSI Performance

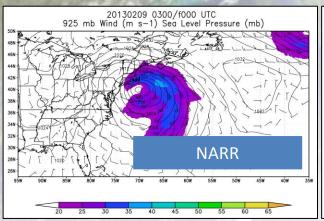

- Profiles assimilated at 300 hPa during GSI cycles for the 0000 UTC 09 February 2013 Experiment
- Clouds limited the # of profiles assimilated near the storm during cycles tm09, tm06, and tm00

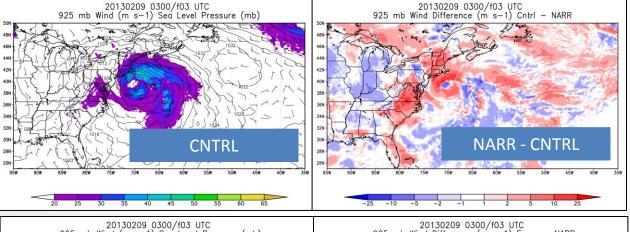
Innovations (Observation – Background) show yellow/red locations where the individual profiles should increase the temperature analysis field

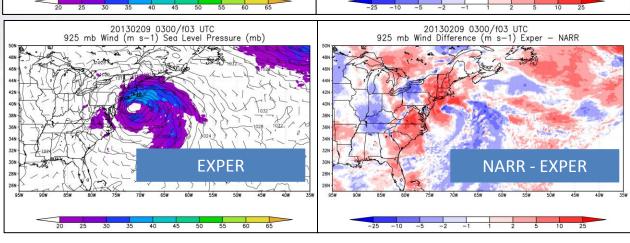


GSI Performance

- 300 hPa Temperature
 Analysis difference shows the impact of assimilating the profiles
- Despite missing profiles during the tm00 cycle near the storm, the cumulative effect of cycling provided observations to update the final temperature analysis
- Red regions indicate the Experiment was warmer than the Control and the final analysis was increased
- The Moisture Analysis
 Increment showed the most
 impact in the lower levels

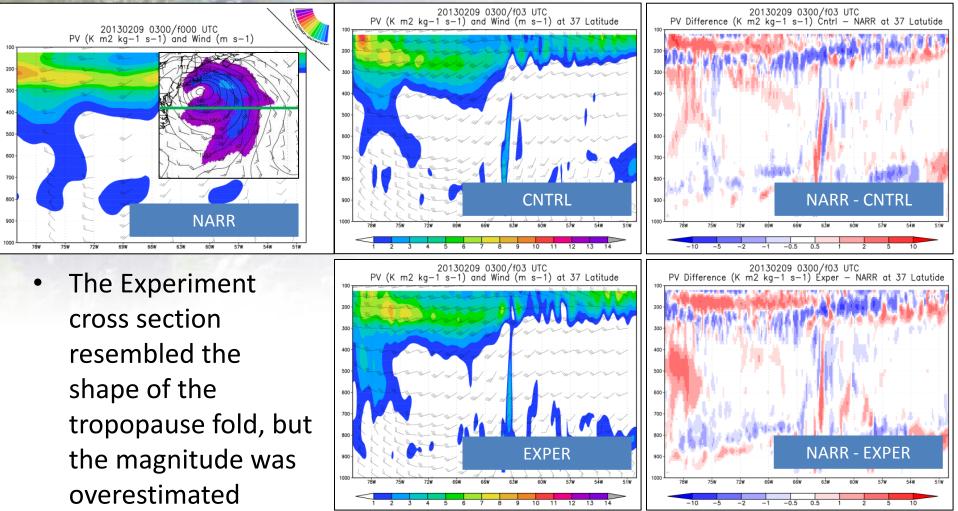



- *Analysis increment is the analysis minus background
- *This graphic is the experiment 300 hPa temperature analysis minus control 300 hPa temperature analysis



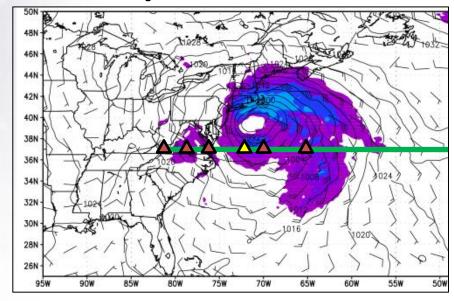
Experiment Analysis

- Strong cold conveyor belt winds wrap around the north side of the low
- Non-convective winds south of the low
- Magnitude of the Experiment winds were closer to the NARR

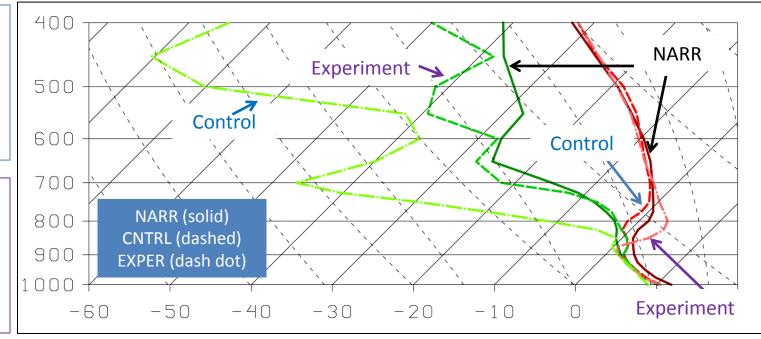


 How does the potential vorticity (PV) anomaly compare to NARR?

Experiment Analysis


 Will vertical profiles reveal an answer to why the Experiment winds were weaker despite a stronger PV anomaly

Transitioning unique data and research technologies to operations


Experiment Analysis

- Both the Control and Experiment were more saturated in the low-levels and had drier upper-levels
- A higher, shallow inversion layer in the Control allowed more vertical transport of momentum thus higher winds
- The lower, deeper inversion layer in the Experiment limited vertical transport of momentum, and led to forecasted winds closer to the NARR's magnitude

Control:
Deeper
saturated layer
Higher, shallow
inversion layer

Experiment:
Shallow
saturated layer
Lower, deeper
inversion layer

Summary & Future Work

- Assimilation of AIRS, IASI, and CrIMSS profiles resulted in analysis increments of greater than +/-3°C in regions surrounding the thick clouds associated with the storm system of interest in the experiment assimilating the full profiles
- Overall, the assimilation of Hyperspectral IR profiles improved the representation of the shape of the tropopause fold and magnitude of the 925 mb winds
- Changes in low-level stability appear more important to forecasting the near-surface wind field than accurately representing the tropopause fold
- Examine the impact of the tropopause fold on stability
- Since the profiles were too saturated in the low-levels, assimilating the Hyperspectral IR profiles with appropriate error values, other than that of RAOB's, may improve the near-surface representation of the profiles

Questions?

Contact:

emily.b.berndt@nasa.gov

