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Methodology
� Hourly surface temperature observations under selected

trees in NDV using a FLIR i3 infrared camera
06:00am to 10:00pm on June 21, 2012( )

� Correction of thermal images for emissivity

� S V F (SVF) determinedky iew actor under each tree using
fisheye photography

� Extraction of average surface temperature for shaded and
non-shaded surface with a region-growing algorithms

� Validation of surface temperatures using data from
weather stations in the xeric and mesic NDV
neighborhoods

� A correction based onir temperature under trees
empirical observations

� Calculat Mean Radiant Temperature (MRT),ion of
Physiological Equivalent Temperature (PET), and Universal
Thermal Comfort Index (UTCI) with Ray an [1]M based on
meteorological observations, fisheye photos, and infrared
images

Introduction
� Desert cities experience high daytime air temperatures and increased solar

intensity in the summer, thermal comfort and pos seriousdecreasing ing
health risks to vulnerable populations, especially during heat waves

� Trees play a significant role in reducing surface and ambient temperatures
through evaporation and shading, therefore mitigating heat-related health
impacts

� Thermal comfort models, e.g., Ray an [1], can help quantify the thermalM
benefits of trees through calculation of various comfort measures based on in-
situ microclimate observations

Research Goal
� Assessment of thermal benefits of tree canopy shade in semi-arid Phoenix,

AZ, for a typical heat wave day during pre-monsoon summer (June 21, 2012)
based on hourly meteorological observations, thermographic images, fisheye
photography, and modeling

� Overarching goal: to understand how the physical dynamics of microclimate in
desert environments impact thermal comfort and perceptions

Results Key Findings
� Overall, the microclimate in the mesic neigborhood was more comfortable

than in the xeric area, both under tree canopies and in the open

� Daytime surface temperatures of inorganic mulch were higher by 5 °C,at least
even under tree canopy, than temperatures of sun-exposed grass

� Before sunrise and after sunset, surface temperatures were higher under the
tree canopy than in the open, indicating that the canopies function as a trap
for outgoing longwave radiation, retaining heat over both surface types on the
order of 1-2 °C PET; these findings confirm the results of a previous study by
Golden et al. [2] on the thermal impacts of canopies on pavement surface
temperatures in Phoenix

� PET values exceeded 40 °C for 9 consecutive hours (10:00 am – 06:00 pm) on
shaded grass and 11 hours (09:00 am – 07:00 ) on shaded inorganic mulchpm

� In the afternoon, under-canopy PET levels were up to 6 C in thelower by °
mesic area and up to 4 C in the xeric neighborhood compared to non-shaded°
sites. Studies in Germany [3,4] and Tel Aviv [5] found u to 10 C differencesp °
for similar settings, which suggests that the thermal benefit of trees in arid
climates is less pronounced than in more temperate, humid regions

Merit
A comprehensive understanding of thermal comfort benefits of trees in semi-
arid environments will

� help urban planners to design more comfortable and sustainable cities

� foster the development of science-based adaptation solutions to urban
climate challenges in desert cities

Future Work
� Quantify the thermal benefits of shade from trees in relation to tree species,

maturity/size of trees, and leaf area density

� Investigate thermal comfort benefit of trees for various tree spacing and
clustering scenarios

� Seasonal assessment of tree canopy shade benefits

� Analysis of thermal comfort under trees and engineered canopy in
comparison to non-shaded landcovers using a matrix of various land cover
types (grass, inorganic mulch, asphalt, concrete, sand, etc.)

� Trade-off analysis for comfort benefit of tree canopy shade and water use
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The Central Arizona-Phoenix Long-Term Ecological Research project's (CAP-LTER)

North Desert Village (NDV) landscape experiment at the ASU Polytechnic campus

Meteorological Observations, June 21, 2012 Tree Species under Investigation

U Plmus arvifolia

(Tree ID: L8)

photo, 11am

xeric (2m), NDV station
mesic (2m), NDV station

relative humidity, AZmet

wind speed, AZmet
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a
ir

 t
e

m
p

e
ra

tu
re

 [
°C

]

20

25

30

35

40

45

50

re
la

ti
ve

 h
u

m
id

it
y 

[%
]

0

5

10

15

20

w
in

d
 s

p
e

e
d

 [
m

s
]

-1

0

2

4

6

8

10

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

time of day [h]

0
40
80
120
160
200
240
280
320
360

w
in

d
 d

ir
e

ct
io

n
 [

°]

Ulmus parvifolia x

x

Pinus eldarica x

x

Brachychiton populneus x

x

Ulmus parvifolia x

x

Pistacia chinensis x

Parkinsonia florida

Eucalyptus microtheca

Eucalyptus microtheca

L8

M1

M3

M4

M5

H9

I2

I6

I9 Parkinsonia florida

Tree ID Species Mesic Xeric

5
0

C
°

5
0

C
°

2
0

C
°

2
0

C
°

Infrared, 7pm

Infrared, 11am

Aerial View of Downtown Phoenix, Arizona

Arizona

*

Western U.S.

MRT
(the sum of all short- and longwave radiation, both direct and reflected, to which the human body is

exposed; weighted average of the various radiant influences in a space)
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PET
(air temperature at which, in an indoor setting without wind and solar radiation, the heat budget of the

human body is balanced with the same core and skin temperature as under complex outdoor conditions)
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Surface Temperature Validation
(observed surface temperatures from the FLIR i3 camera vs. NDV IRR-PN infrared radiometer sensors)
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NDV IR sensor (xeric, inorganic mulch)

FLIR i3 (xeric, inorganic mulch)

NDV IR sensor (mesic, grass)

FLIR i3 (mesic, grass)

xeric

MBE* 1.0

RMSE** 3.1

MAE*** 2.3

d**** 0.97

MSE***** (systematic) 3.9

MSE (unsystematic) 21.6

RMSE (systematic) 1.9

RMSE (unsystematic) 4.6

mesic

MBE* -1.9

RMSE** 3.6

MAE*** 2.6

d**** 0.95

MSE***** (systematic) 4.1

MSE (unsystematic) 25.8

RMSE (systematic) 2.0

RMSE (unsystematic) 5.0

* Mean Bias Error                 ** Root Mean Square Error

***Mean Absolute Error     **** Index of Agreement

***** Mean Square Error

RayMan Output: Thermal Comfort Measures
(woman, 65kg, 1.60m, 35 years, t-shirt and skirt, standing)
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UTCI
(air temperature in the reference condition of a given microclimate (wind, radiation, humidity, and air

temperature) that would produce the same dynamic response of the physiological model)
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