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Abstract Ensemble Kalman Filter \ Preliminary Model Results \
Soil moisture is a crucial variable for weather prediction because of its We assimilate AMSR-E soil moisture observations using an el rement

influence on evaporation. It is of critical importance for drought and flood Ensemble Kalman Filter (EnKF) within LIS. Kalman filtering is a

monitoring and prediction and for public health applications. The NASA Short- data assimilation method that combines a forecast "

term Prediction Research and Transition Center (SPORT) has implemented a (background) with observations to generate an improved "R

new module in the NASA Land Information System (LIS) to assimilate estimate of a model variable. A Kalman Filter calculates an R

observations from the ESA's Soil Moisture and Ocean Salinity (SMOS) satellite. optimal weighting between the background and the Qe

SMOS Level 2 retrievals from the Microwave Imaging Radiometer using observation. The EnKF uses the spread of the ensemble to gg

Aperture Synthesis (MIRAS) instrument are assimilated into the Noah LSM represent the forecast error covariance. We used an bl

within LIS via an Ensemble Kalman Filter. The retrievals have a target ensemble with 16 members generated using perturbations of

volumetric accuracy of 4% at a resolution of 35-50 km. Parallel runs with and 3 forcing variables (incident longwave and shortwave

without SMOS assimilation are performed with precipitation forcing from radiation, and rainfall), 4 state variables (4 layers of soil

intentionally degraded observations, and then validated against a model run moisture), and 1 observation variable (SMOS soil moisture). .

using the best available precipitation data, as well as against selected station
observations. The goal is to demonstrate how SMOS data assimilation can
improve modeled soil tates in the absence of dense rain gauge and radar
networks.

SMOS Assimilation in LIS

. . Read ECMWF Level 2 Soil Moisture User Data Product

The Land Information System (SMUDP) files

Read all orbits that fall in the time window (currently +/-3
The NASA Land Information System (LIS, Kumar et al. 2006) is a modeling hours) then exclude data outside the time window or the

framework for running land surface models. To facilitate i isons, ic region.

users may select land surface models, forcing data sources, landcover and soil « Apply QC for RFI, frozen soil, snowcover, falling
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