First Operational Implementation of SAR Winds at NOAA

Fourth Conference on Transition of Research to Operations

Frank Monaldo and William Pichel <u>Frank.Monaldo@noaa.gov</u>, William.G.Pichel@noaa.gov

> Serving as an IPA (Interagency Personnel Action) at The National Ice Center and NOAA NESDIS

- The National Ice Center (NIC)has long used SAR (synthetic aperture radar) imagery for sea ice location and identification. NOAA STAR has routinely used SAR winds in a research mode since 2000.
- Operational SAR winds May 2013 at NESDIS and in parallel at NIC using ANSWRS (APL/NOAA SAR Wind Retrieval System)
- SAR wind imagery may help in SAR imagery interpretation at the NIC along with other applications for high-resolution winds in coastal areas.

111:1

NATIONAL OCE.

AND ATMOSPHE

NOAA

ARTMENT OF

Synthetic Aperture Radar (SAR) Geometry

For a real aperture radar, azimuth resolution is limited by the beam width of the antenna. A SAR is different

3

Sources of SAR data

	Satellite	Launch	Frequency	Polarization	Resolution
USA USA	Seasat	1978	L	НН	25 m
	SIR-B	1984	L	НН	16-58 m
	ERS-1	1991	С	VV	25 m
	JERS-1	1992	L	НН	18 m
USA	SIR-C	1994	L, C, X	Full-Pol (L,C); VV(X)	10-50 m
	ERS-2	1995	С	VV	25 m
	Radarsat-1	1995	С	нн	25-50 m
USA	SRTM	2000	С, Х	HH, VV (C); VV (C)	30 m
	Envisat	2002	С	VV, HH, VV/HH, HV/HH, VH/VV	30-1000 m
	ALOS	2006	L	Full-Pol	7-88 m
	TerraSAR-X	2007	x	Full-Pol	3 m
	Radarsat-2	2007	С	Full-Pol	3-100 m
	Cosmo SkyMed	2007	X	Full-Pol	3 m
	Sentinel-1A/B	2013	С	VV,/VH, HH/HV	5-20 m
5		2044	February AMS Ofth	Appual Masting Atlanta Coarris	-APL

Specular scattering from a smooth surface: Most of the energy is reflected away.

Diffuse Scattering from a rough surface: Energy is reflected in all directions.

The rougher the surface the greater the backscatter, the brighter the SAR image.

Bragg Scattering

Sir William Lawrence and Sir William Henry Bragg

Bragg resonance was discovered in the context of scattering from crystal structures.

A periodic structure will set up a resonance for waves that match the Bragg condition.

$$\lambda = 2 L \sin \theta$$

$$L \sin \theta$$

$$L \sin \theta$$

$$L \sin \theta$$

NOAA

RTMENT O

NATIONA/

Geophysical Model Function

 $\sigma_{\rm V}^0(U,\theta,\phi) = A(\theta)U^{\gamma(\theta)}[1+B(\theta)\cos\phi + C(\theta)\cos 2\phi]$

where

- $\sigma_{\rm V}^0$ is normalized radar cross section at vertical polarization.
- U is wind speed.
- θ is nadir incident angle.
- ϕ is the radar look angle with respect to the
- A, γ , B, C are empirical parameters.

ND ATMOSA

NOAA

RTMENT O

NATIONAL OCA

- Radar cross section increases with wind speed.
- Given a wind speed and direction, can estimate radar cross section.
- Given a radar cross section, there are many combinations of wind speed and directions
- Using an estimate of wind direction, we can estimate wind speed.
 - Numerical model predictions of wind direction
 - Linear features (scale 2-10 km) associated with wind direction.

NOAA

TRATION

Systematic SAR-QuikSCAT comparisons

QuikSCAT directions for SAR wind retrieval

APL

NOAA

2014 February, AMS 94th Annual Meeting, Atlanta, Georgia

Model directions for SAR wind retrieval

2014 February, AMS 94th Annual Meeting, Atlanta, Georgia

Radarsat-1 SAR NRCS image to wind image

ND ATMOSP

NOAA

PTMENT OF

TIONAL OF

2000 Oct 31 03:44:24 UTC

Sample Radarsat-2 data PNG/TIFF image

2012-09-12 08:00:46 UTC 13.78° W 76.50° N

NOAA

RTMENT OF

NATIONAL

Radarsat-2 example of an atmospheric low

2012-09-15 03:04:11 UTC 153.85° W 77.95° N

AND ATMOSPH

NOAA

RTMENT OF

TIONAL

2012-08-30 05:57:54 UTC 23.80° E 80.18° N

Webpage at the Office of Satellite and Product Operations (OSPO)

If you want access to the actual wind speeds saved in netCDF format (CF compliant), please let me know:

Frank.Monaldo@noaa.gov

http://www.ospo.noaa.gov/Products/ocean/sar/index.html

ND ATMOSE

NOAA

RTMENT O

TIONAL

http://www.natice.noaa.gov/

2014 February, AMS 94th Annual Meeting, Atlanta, Georgia

AND ATMOSPHER

NOAA

ARTMENT OF

NATIONAL

Application of IMS (Interactive Multisensor Snow and Ice Mapping System) (KMZ)

Eastern coast of Greenland, 2013 Apr 10 07:37 UTC

NOAA

RTMENT OF

ATIONAL

Application of IMS (Interactive Multisensor Snow and Ice Mapping System) (GeoTFF)

Lake Michigan

AND ATMOSPH

NOAA

RTMENT OF

ATIONAL,

2013 April 29, AMS Conference on Polar Meteorology and Oceanography

Application of IMS (Interactive Multisensor Snow and Ice Mapping System) (GeoTIFF)

Lake Huron and Lake Erie, 2013 Mar 16 11:35:51 UTC

NOAA

MENT OF

ATIONAL

Application of IMS (Interactive Multisensor Snow and Ice Mapping System) (GeoTIFF)

Kamchatka Peninsula, 2013 Mar 11 06:57:20 UTC

NOAA

TIONAL

- NIC/NOAA has long used SAR (synthetic aperture radar) imagery for sea ice location and identification.
- SAR imagery can be used to estimate the wind speed field.
- SAR wind imagery may help in SAR imagery interpretation at the NIC and coastal area applications.
- Data available in PNG, KMZ, GeoTIFF w/ IMS ice mask data. Actual winds are available at netCDF (CF) compliant files.

NOAA