Probabilistic Global Convective Hazard Forecasts and Verification

Rebecca Stretton/Riers Buchanan, Will Hand, Dan Suri,Steve Willington

Severe convection can cause a range of weather hazards which are a danger to both the general public and commercial sectors such as aviation.

The Met Office produce forecasts for a range of convective hazards using the Met Office Convection Diagnosis Procedure (CDP).

This work explores CDP forecasts produced using the Met Office Global Regional Ensemble Prediction System in the global configuration (MOGREPS-G).

MOGREPS-Global CDP

-33km model resolution

12 ensemble members

- Produces a probability of occurrence
- Run for $0 Z$ and $6 Z$ MOGREPS-G run each day only. - Lead times of T+12, 18, 24, 30, 36, 42, 48, 60
- Convective parameters:

Figure 1: MOGREPS-G convective forecasts for 26/05/2013 at 6Z.

Verification: Lightning in Europe

This objective verification of the lightning diagnostic includes 1116 civil airports across Europe during the 2013 summer (June-August).
Lightning Observations
The ATDnet (Arrival Time Difference) system is an automatic lightning location network that senses lightning strokes over a geographical area. A stroke count is processed to give the number of strokes within a 50km radius of each airport over a 6 hour period.
Lightning Probability
Lightning probability is derived using the lightning index (LI) of each ensemble member at the airport Lightning index has 3 outcomes: 0 , 1 or 10 as displayed in Table 1 depending on a variety of convection parameters.

Probability of Lightning Index ≥ 10

Hits	Misses
2.2%	9.8%
False alarms	Correct rejections
3.0%	85.0%

- The rare nature of lightning focuses the points on the ROC curve closer to the origin.
- LI10 displays fewer false alarms as the confidence of lightning is higher.
Probability of Lightning Index ≥ 1

Hits	Misses
2.4%	9.4%
False alarms	Correct rejections
5.4%	82.8%

- MOGREPS-Global shows good reliability for available probabilities.
- LI1 captures more hits as the broader conditions allow weaker/smaller storms to be forecasted, however this increases the false alarms
Figure 3: a) ROC curve for probability of $\mathrm{LI} \geq 10$, b) reliability plot for probability of $\mathrm{LI} \geq 10$, c) ROC curve for probabiity of $\mathrm{L} \geq 1$, d) reliability plof for probabiity of $L \geq 1$. The contingency tables are calculated by classifying a hit as 2 or more strokes observed and a non zero probability of lightning forecasted within a 50 km radius of the airport.

Case Study: Hail in Australia

16 ${ }^{\text {th }}$ November 2013 in South-East Queensland, Australia
The hail diagnostic derives the probability of hail > 10 mm in diameter (Hand and Cappelluti, 2010), using various parameters to provide an indication of hailstone size. Additional checks of rain rates $<0.5 \mathrm{~mm} /$ hour and Lifted Index >0 set the probability of hail to zero
On $16^{\text {th }}$ November the model indicated the probability of hail across SE Queensland at a lead time of $T+30$. Figure 4 shows the agreement between model output and observed rainfall

Figure 4: a) MOGREPS-G probability of hail forecast for 16/11/2013 at 6Z, b) Accumulated precipitataion for 16

Case Study: Tornadoes in USA

31st May 2013 in Central Plains, USA
The tornado diagnostic produces a probability of tornadic activity based on the Fuzzy Tornado Parameter (FTP). FTP is calculated by combining values of CAPE, Lifted Index, precipitable water and rain rate. Any non-zero value indicates a signal for a tornado, higher values show greater propensity for tornado formation.
On $31^{\text {st }}$ May tornadoes were reported across the central plains (NOAA SPC) , the model captured this area at risk at a lead time of $\mathrm{T}+60$
As seen with lightning using a lower threshold produces a wider forecast area, however when forecasting tornadoes this could create many more false alarms
 Figure 5: MOGREPS-G probability of tornado forecast

Conclusions and Future Work

The forecasts show skill and reliability given the resolution and global capability. They are global forecasts intended to give early warnings of potential hazardous weather

The lightning diagnostic shows slight under forecasting and recalibration could improve results. Further verification research into the diagnostic will be carried out. Future work would also include more objective verification of the lightning diagnostic and potential additions to the tornado diagnostic to create a probability of supercells.

References

Hand, W. H. and G. Cappelluti, 2010: A global hail climatology using the UK Met Office convection diagnosis procedure (CDP) and model analyses. Meteorol. Appol. Sead. A. W. et al. 2007: Rainfieds. The Australian Bureau of Meteorology system to quantitative precinitaion estimation. 33^{d} American Meteorological Society Radar Seed, A. W. .et al., 2007: Rainfi
Conference, Cairns, Australia.

