Polarimetric Tornado Debris Signature Spatial and Temporal Characteristics

Background

Tornadoes may loft non-meteorological scatterers characterized by unique polarimetric radar signatures. The polarimetric debris signature includes correlation coefficient (ρ_{hv}) < 0.8, differential reflectivity (Z_{DR}) < 0.5, reflectivity factor (Z_{hh}) > 45 dBZ, and collocation with a hook echo and pronounced vortex diagnosed from radial velocity (Ryzhkov et al. 2005). In this study, all reported tornadoes in the domain of a polarimetric WSR-88D radar from Jan 2012 – May 2013 were examined for the presence of a debrisconsistent signature, and spatial and temporal characteristics of signatures were explored.

Objectives

• Quantify *frequency of signature occurrence* as a function of geographic region, tornado intensity, property damage, and radar beam altitude

• Discover any *seasonal changes* in signature visibility

• Compare *signature areal extent* to property damage and 0.5-degree radar beam altitude

Methods

• All tornado events from 01/01/2012 through 05/31/2013 were identified using the NCDC Storm Events Database. For these events, a database was constructed including:

- Beginning and ending time
- Beginning and ending latitude/longitude
- EF-scale, width, and county-level path length
- Associated deaths, injuries, and crop/property damage

•The nearest polarimetric WSR-88D radar dataset was identified for each tornado event

•Radar data was visualized, and for each tornado event with data of acceptable quality, these attributes were recorded:

- Convective mode
- Presence or absence of debris signature
- Distance to radar and altitude of radar beam (assuming 4/3 Earth radius model)
- Time of maximum signature and signature longevity; other signature characteristics

• Maximum areal extent (km²) of the signature was also estimated for each event at the 0.5-degree elevation angle

Fig. 1: Debris signature detections and events without detections.

Matthew Van Den Broeke **Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln**

Seasonal Dependence

Season	n	Avg. Appearance After First Report (min)
Dec – Feb	13	6.3
Mar – May	77	4.2
Jun – Aug	18	5.2
Sept - Nov	11	2.0

able I. Time (inin) to debits signature first appearance after reported tornadogenesis in different seasons.

Fig. 3: Percentage of tornadoes with a debris signature in each month (red line), and percentage of tornado events rated EF-2+ (blue bars). Spring maximum likely corresponds to more strong tornadoes; fall maximum may correspond to greater natural debris availability

Debris Signature Areal Extent

Classification	n	Avg. Areal Extent (km²)
EF-0	31	1.77
EF-1	43	1.29
EF-2	28	2.88
EF-3	14	4.88
EF-4	4	2.94
Table 2: Average maximum areal extent of		

Fig. 4: Reported property damage compared to areal extent of associated debris signature. Signature extent rises exponentially with reported damage.

a tornado debris signature, for cases in which areal extent could be estimated related to tornado intensity rating.

Debris Signature Example: Moore, Oklahoma, EF-5 Tornado (20 May 2013)

Relationship to Observational and Tornado Characteristics

Classification	n	Percent with Signature		
EF-0	460	7.8%		
EF-1	263	24.3%		
EF-2	67	56.7%		
EF-3	24	83.3%		
EF-4	6	100%		
EF-5	1	100%		
Table 3. Percentage of tornadoes in each Enhancer				

Table 3: Percentage of tornadoes in each Enhanced Fujita Scale classification with a debris signature.

Property Damage	n	Percent with Signature
\$0	393	16.3%
\$1 - 10,000	83	12.0%
\$10,001 - 100,000	205	12.7%
\$100,001 - 500,000	92	39.1%
\$500,001 - \$1M	17	64.7%
\$1M - \$10M	20	55.0%
\$10M - \$2B	11	81.8%

Table 4: Percentage of tornadoes in several property damage categories with a debris signature.

Altitude of 0.5 ^o Beam (km)	n	Percent with Signature
0.05 - 0.199	32	25.0%
0.2 - 0.399	84	27.4%
0.4 - 0.749	132	26.5%
0.75 – 0.99	89	12.4%
1-1.49	157	12.1%
1.5 – 1.99	112	11.6%
2 – 2.99	131	8.4%
3 – 3.99	34	2.9%
1+	٩	0.0%

Table 5: Percentage of tornadoes intersected at various altitudes by the 0.5-deg beam with a debris signature.

Fig. 6: Visualization of debris from the 20 May 2013 Moore, Oklahoma, EF-5 tornado:

(a): Z_{hh} debris manifestation. Location of cross-section in (c) is indicated by the white

(b): Z_{hh} isosurfaces (seen from the south) indicating lofted debris; white oval shows debris plume.

(c): ρ_{hv} cross-section. White oval indicates debris; other low values correspond to weak return south of

Fig. 8: Radar observations from the Morehead City, NC, WSR-88D (KMHX) during a short-lived tornado on 20 May 2012. (a) shows Z_{hb}, with white box indicating the location of panels (b) and (c). (b) shows radial velocity, and (c) shows ρ_{hv} . A debris signature was readily apparent within the whitecircled region, despite the tornado having been mostly over water.

- Signature temporal characteristics relative to reported tornado lifetimes
- Examination of typical Z_{DR} , Z_{hh} , and ρ_{hv} values in events with different characteristics

Special thanks to Sabrina Jauernic, who helped substantially with radar data analysis, and Kun-Yuan Lee who provided the GIS graphic. UNL provided the author regular academic year support.

http://www.ncdc.noaa.gov/stormevents/ http://has.ncdc.noaa.gov/pls/plhas/has.dsselect Ryzhkov, Alexander V., Terry J. Schuur, Donald W. Burgess, Dusan S. Zrnic, 2005: Polarimetric Tornado Detection. J. Appl. Meteor., 44, 557–570.

Case 1: A False 'Debris Ball' (KMQT, 9 June 2012)

Fig. 7: Radar observations from the Marquette, MI, WSR-88D (KMQT) during a long-lived tornado event on 9 June 2012. (a): Z_{hh} , with white box showing the location of panels (b) and (c). (b) shows ρ_{hv} , and (c) shows Z_{DR} . A debris signature was visible during part of the tornado's life, but not at this time even though the parent supercell appears to have a 'debris ball' appearance in Z_{bb} (white circle in all panels).

Case 2: A Debris Signature over Water (KMHX, 30 May 2012)

Conclusions and Future Work

Conclusions

Tornado debris signatures are most commonly observed in the Southern Plains and Southeast Signatures are increasingly prevalent as tornado intensity increases, with a majority of EF-2+ events containing a

Debris signature occurrence is strongly dependent on distance from the radar; events intersected below 0.75 km are much more likely to be associated with a debris signature (corresponding to a range of ~60 km) Debris is most commonly observed in spring (likely due to a higher occurrence of strong tornadoes) and fall (possibly due to greater natural debris availability); debris also appears most rapidly after tornadogenesis in fall Areal extent of the debris signature is indicative of property damage, but not strongly indicative of EF-Scale Debris signatures may be visible in unusual cases—any strong vortex may loft debris to radar beam altitude

Future Work

Signature comparison to underlying landcover

Analysis of signature vertical characteristics

Acknowledgements

References