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How does a squall line influence a nearby supercell? Effects of squall line-induced perturbations are subtle:
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Figure 4: Simulated radar reflectivity (dBZ, grey shading as shown), vertical vorticity (s, colored shading as shown), and wind vectors at 1 km AGL, :
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Tl e g The results presented should be considered preliminary, as these simulations represent a first step in a project that is just getting underway.
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