

Experimental MOS Precipitation Type Guidance from the ECMWF Model

Phillip E. Shafer David E. Rudack

National Weather Service Meteorological Development Laboratory Silver Spring, MD

Development Overview:

- * 3-hourly (3-category) and 12-hourly (4-category) MOS precipitation type guidance has been developed from the ECMWF model.
- ***** 0000 and 1200 UTC cycles out to 192 hours
- Development sample: 4/1/2008 4/15/2013 (~5 cool seasons)
- * Cool season: 9/1 5/31 CONUS, 9/1 6/15 Alaska
- Verification was performed using climatology and operational GFS MOS guidance as reference forecasts.
- Guidance is used to populate the experimental shortrange and extended-range ECMWF MOS text bulletins.
- ★ Guidance also available experimentally in gridded form.

Predictands:

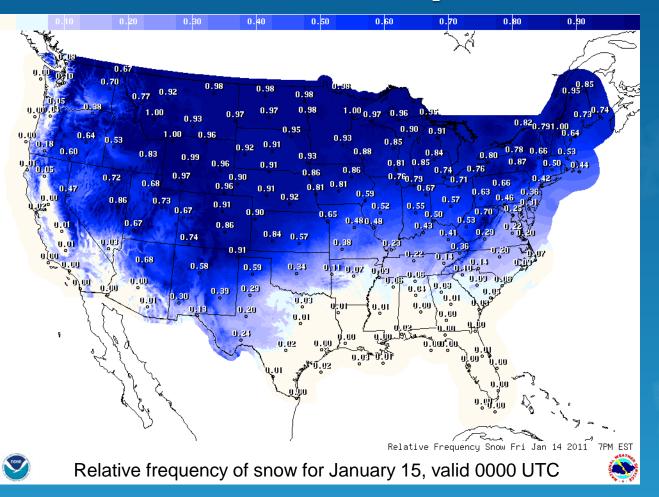
- * MOS precipitation type guidance was developed from present weather observations at METAR sites.
- Roughly 1450 stations with reliable observations (~1320 CONUS, 50 Alaska, 65 Canadian)
- * 3-hourly (3-category) predictand:
 -- Freezing, frozen, and liquid categories
 -- Valid every 3 hours on the hour
- 12-hourly (4-category) predictand:
 -- Freezing, snow, rain, and rain/snow mix
 -- Valid for 12-h periods ending at 00/12 UTC
- Only cases with observed precipitation were used to develop the equations (probabilities are <u>conditional</u> on the occurrence of precipitation).

Predictands:

Freezing	Frozen	Liquid
Freezing rain (FZRA)	Snow (SN)	Drizzle (DZ)
Freezing drizzle (FZDZ)	Snow showers (SHSN)	Rain/drizzle (RADZ)
Ice pellets (PL)	Snow grains (SG)	Rain (RA)
Any precipitation in		Rain shower (SHRA)
combination with any of the above.		Thunderstorm (TSRA)
		Any mixture of liquid precipitation with snow.

***** Sleet/pellets included with freezing category

- Model composite temperature profiles for sleet and freezing rain cases often do not differ significantly enough to distinguish between them.
- * 12-hourly product includes rain/snow mix category.


Geoclimatic Predictors:

- Monthly conditional relative frequencies of freezing, frozen, and liquid precipitation used as predictors.
- * Logit 50% (equal-probability) values were calculated for several parameters that are good discriminators of precipitation type:
 - -- Thickness (1000-850 hPa, 1000-500 hPa)
 - -- Temperature (2 m, 850 hPa)
 - -- Freezing level
- \$ 50% values were subtracted from model forecast to get new "transformed" predictor that helps to account for climatological differences between stations.
- Relative frequencies and logit 50% values at METAR sites were analyzed to high resolution grids over CONUS and Alaska.

Gridded Relative Frequencies:

Gridded relative frequencies are available on the web:

http://www.mdl.nws.noaa.gov/~mos/gmos/ptype_conus2p5/climRF.php

Equation Development:

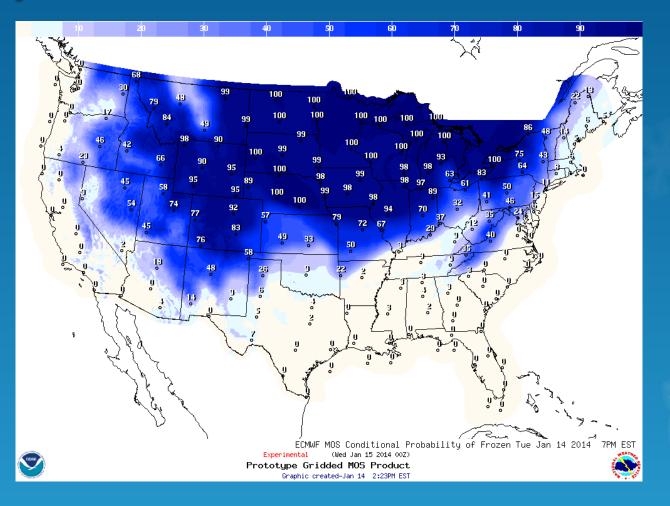
- Several ECMWF model-derived predictors used: e.g., thicknesses, T/Tw at various levels, T advection, "Z-R predictor", logit transforms
- Conditional relative frequencies most important in extended-range projections (past 84 hours)
- * Observed predictors in early projections
- ***** Multiple linear regression
- Stations grouped into one or more large regions "generalized operator" approach
- ***** Postprocessing:
 - -- Probabilities normalized so they sum to 100%
 - -- Thresholds computed to derive best category

Short-range text bulletin

KBWI ECM MOS GUIDANCE 1/13/2014 0000 UTC DT /JAN /JAN /JAN HR 06 09 12 15 18 21 00 03 06 09 18 21 00 X/N TMP 51 52 49 46 46 45 45 43 37 36 DPT OV CLD CL BK BK OV OV OV VO VO ov ov OV OV ov BK WDR 23 20 WSP P06 P12 Q06 Q12 POZ з n POS TYP

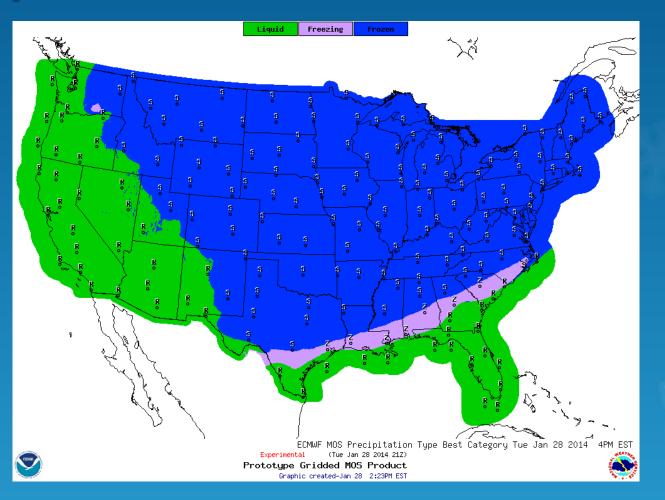
KBWI	E	CMX 1	40S	GUIDA	ANCE	1,	/13/2	2014	00	00 U.	гс						
FHR	24	36	48	60	72	84	96[1	108	120	132 :	144 :	156 1	168 1	180 1	192		
MON	13	TUE	14	WED	15	THU	16	FRI	17	SAT	18	SUN	19	MON	20	CLI	IMO
X/N	54	43	48	34	48	28	42	24	45	29	34	19	36	23	45	25	42
TMP	49	46	43	36	38	28	34	27	41	31	25	22	28	26	37		
DPT	33	40	39	32	27	18	15	16	26	18	5	10	5	16	21		
CLD	PC	ov	OVI	ov	OVI	ov	PC	CL	OVI	ov	OVI	CL	PC	CL	CL		
WND	71	6	41	4	5	9	8	4	71	11	18	11	13	6	11		
P12	1	40	93	8	18	27	71	12	34	59	15	12	13	6	2	22	24
P24	1		93		28		27		34		62		14		6		34
Q12	0	0	21	0	01	0	01	0	01	1	0	0	1				
Q24	1		21		01		01		01		1		1				
PZP	3	0	01	0	2	1	2	4	3	0	1	0	3	3	2		
PSN	20	0	01	3	28	49	74	73	33	29	77	75	57	63	14		
PRS	01	1	31	2	24	29	15	9	15	22	0	0	6	0	4		
TYP	R	R	R	R	RS	S	S	S	RS	RS	S	S	S	S	R		

Extended-range text bulletin


Short-range text bulletin

KBWI	E 1/13/2014					0000 UTC															
DT /	JAN	13	3				/J2	AN	14						/ J7	AN	15				1
HR	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	18	00
X/N							54				43				48				34		48
TMP	32	30	31	43	51	52	49	47	47	46	46	45	45	45	43	41	40	37	36	46	38
DPT	26	25	26	31	32	32	33	35	36	38	40	42	43	42	39	37	33	33	32	33	27
CLD	CL	CL	CL	FW	BK	BK	ov	ov	ov	ov	ov	ov	ov	ov	ov	ov	BK	ov	ov	ov	OV
WDR	00	00	17	20	17	16	24	18	20	23	20	22	27	32	31	31	00	00	11	30	34
WSP	00	00	01	05	07	06	06	04	04	04	03	02	03	02	04	02	00	00	01	04	05
P06			1		1		0		8		37		93		70		8		2	8	18
P12							1				40				93				8		18
Q06			0		0		0		0		0		2		1		0		0	0	0
Q12							0				0				2				0		0
POZ	4	2	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0	3	4	0	0
POS	52	46	32	20	8	0	0	0	0	0	0	1	0	0	1	3	10	30	29	32	44
TYP	S	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Extenc	led-range
text	bulletin


KBWI	E	CMX 1	MOS (GUIDA	ANCE	1,	/13/2	2014	000	00 T	JTC						
FHR	24	36	48	60	72	84	96 :	108	120 1	132	144	156	168	180	192		
MON	13	TUE	14	WED	15	THU	16	FRI	17	SAT	[18]	SUN	1 19	MON	20	CLI	IMO
X/N	54	43	48	34	48	28	42	24	45	29	34	19	36	23	45	25	42
TMP	49	46	43	36	38	28	34	27	41	31	25	22	28	26	37		
DPT	33	40	39	32	27	18	15	16	26	18	5	10	5	16	21		
CLD	PC	OV	OVI	ov	OVI	ov	PC	CL	OVI	ov	OVI	CL	PC	CL	CL		
WND	71	6	4	4	5	9	8	4	71	11	18	11	13	6	11		
P12	1	40	93	8	18	27	71	12	34	59	15	12	13	6	2	22	24
P24	1		93		28		27		34		62		14		6		34
Q12	0	0	2	0	01	0	0	0	01	1	01	0	- I				
Q24			21		01		01		01		11						
PZP	3	0	0	0	2	1	2	4	3	0	1	0	3	3	2		
PSN	20	0	0	3	28	49	74	73	33	29	771	75	57	63	14		
PRS	0	1	3	2	24	29	15	9	15	22	01	0	6	0	4		
TYP	RI	R	R	R	RS	S	SI	S	RS	RS	SI	S	SI	S	R		

u.Y

★ 3-category equations developed out to 192 hours

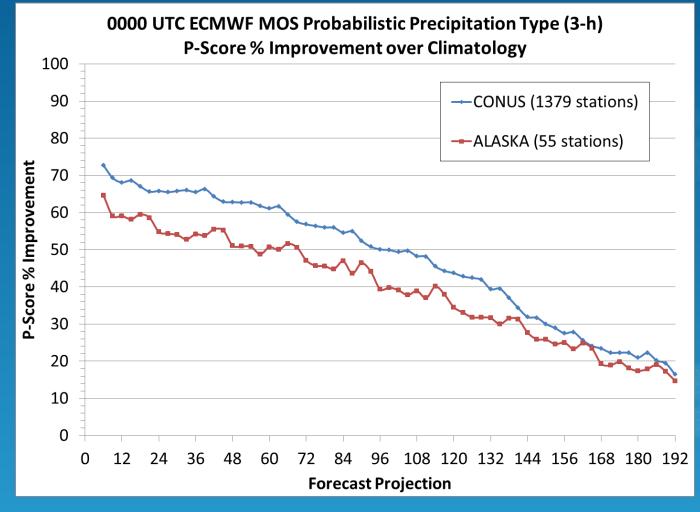
* Equations evaluated directly at each NDGD point

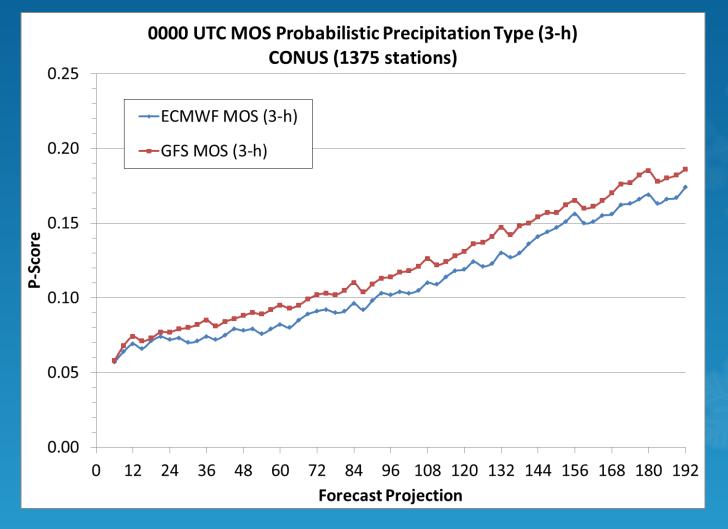
★ 3-category equations developed out to 192 hours

* Equations evaluated directly at each NDGD point

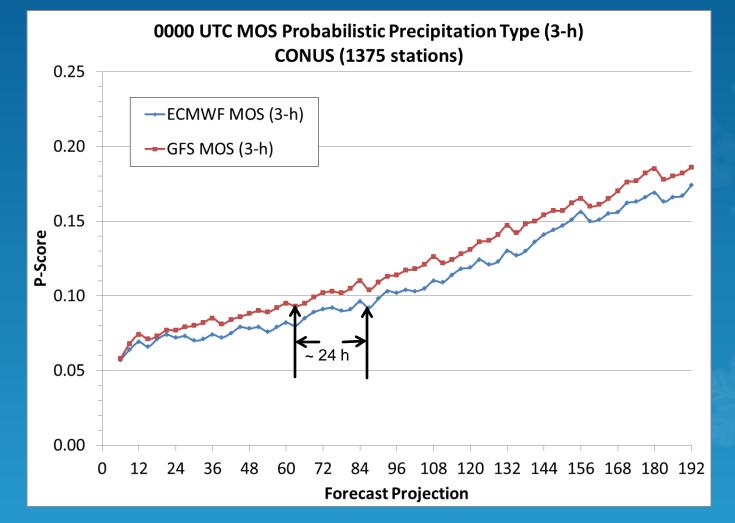
Verification:

- ***** "k-fold" cross-validation approach:
 - -- Each season withheld as independent sample
 - -- Equations developed from remaining 4 seasons
 - -- Scores calculated for aggregate of all 5 tests (sampling variability is smoothed out)
- ***** P-score used to verify probability forecasts
- * Heike skill score used to verify best category
- ***** Scores calculated for reference forecasts:
 - Climatology conditional relative frequencies
 Operational GFS MOS precipitation type
- Results shown for 0000 UTC cycle (focusing mainly on CONUS – see extended abstract for Alaska results).

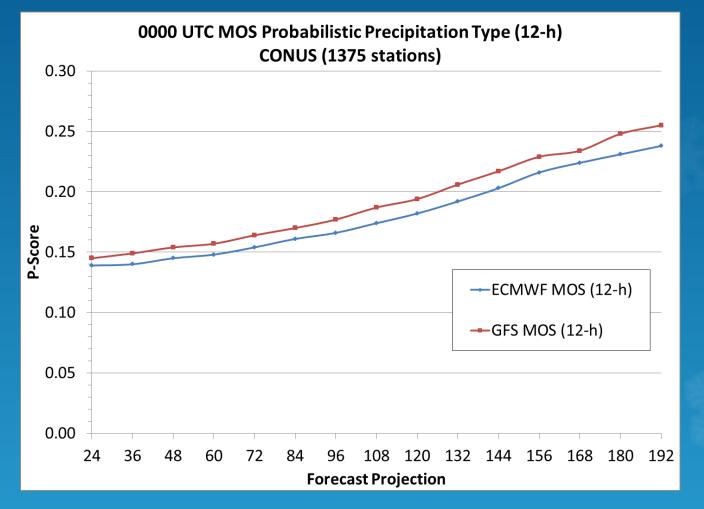




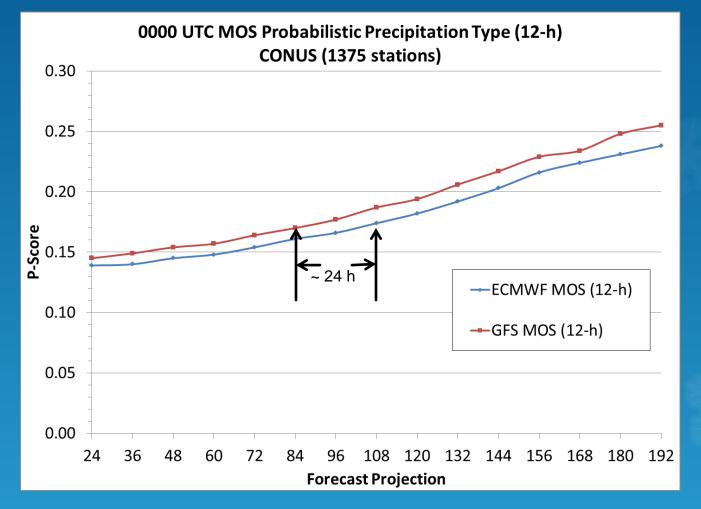
Verification: vs. Climatology


* ECMWF MOS is skillful through 192 hours

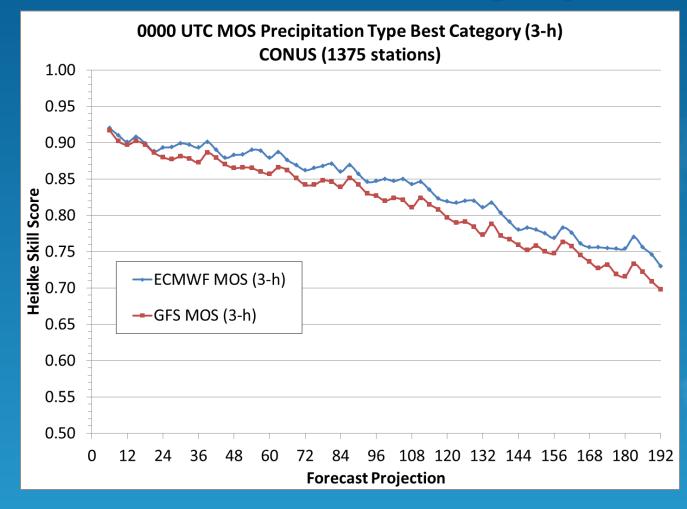
* Tougher forecast problem in Alaska



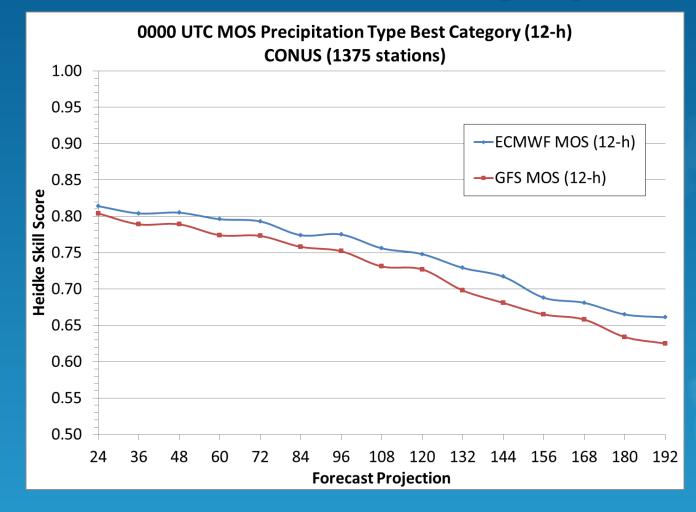
ECMWF MOS compares favorably with GFS MOS through 192 hours



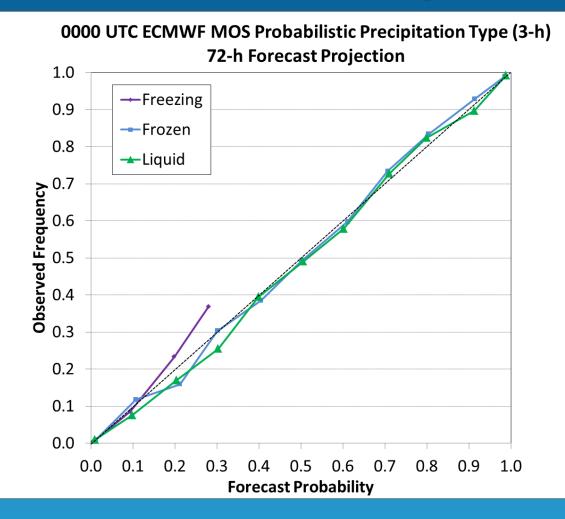
ECMWF MOS guidance has similar or lower p-scores than GFS MOS guidance valid up to 24 hours earlier!


Extended-range ECMWF MOS more skillful through day 8

Extended-range ECMWF MOS more skillful through day 8


Verification: Best Category

ECMWF MOS skill relative to GFS MOS widens with increasing projection.



Verification: Best Category

ECMWF MOS skill relative to GFS MOS widens with increasing projection.

Verification: Reliability

***** ECMWF MOS probabilities are mostly reliable***** Much lower number of cases for freezing category

Summary:

- New short-range and extended-range ECMWF MOS precipitation type guidance has been developed for 0000 and 1200 UTC cycles.
- Guidance is available to forecasters experimentally in text bulletins and in gridded format.
- Cross-validation: ECMWF MOS precipitation type guidance compares favorably with GFS MOS for all projections through 192 hours.
- Future plans GFS MOS equations will soon be refreshed.
- At present, ECMWF MOS guidance is restricted to internal NWS use due to contractual agreements with the European Centre.

Thank you

Phil.Shafer@noaa.gov

David.Rudack@noaa.gov

