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Agenda 
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– Background and Objectives

– Data

�Marshall-Palmer relationship

�Recalibration of the Z-R relationship using least 
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�Recalibration of the Z-R relationship using quantile 
regression

�Optimization of the Z-R relationship for Singapore

�Conclusions
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Background

� A joint development between IBM Research and the National 
Environmental Agency (NEA), Singapore

� Objectives: 

1. Recalibrate the Z-R relationship for Singapore

2. Compare different methods that convert radar reflectivity factor (Z) 
to rainfall intensity (R)

3. Optimize model parameters of the Z-R relationship for Singapore

� Our research is still on-going, and preliminary findings are 
presented
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About Singapore

� Singapore is located at the southern tip of 
the Malay Peninsula and is 137 kilometres 
(85 mi) north of the equator. 

� Average annual rainfall ~ 2,342mm (92
inches)

– Rio de Janeiro ~46 inches

– New York: ~50 inches (total precipitation)

– Seattle: ~38 inches (total precipitation)

� The “Four Seasons” in Singapore

– North-East Monsoon Season (Dec to Mar)

– Inter-Monsoon Season (Apr and May)

– South-West Monsoon Season (Jun and Sep)

– Inter-Monsoon Season (Oct and Nov)

� This study focuses on the relationship between (radar) reflectivity and 
rainfall rate (i.e., the Z-R relationship) for Singapore during the two inter-
monsoon seasons

Singapore
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Data

� Weather radar reflectivity data:

– 30 heavy rain events in 2010 and 46 heavy rain events in 2011

– Cartesian grid of 480 by 480 pixels

– Top left corner: E102.892, N2.42799

– Lower right: E105.052, N0.269748

– Spatial resolution: 0.5 by 0.5 kilometres

– Sampling frequency: 5min

� Illustration: (E102.892, N2.42799)

(E105.052, N0.269748)

dBZ

Singapore
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Example: A typical inter-monsoon season convective 
storm

Key features:

� Developed quickly – challenge for prediction

� Lifetime: 1 to 3 hours

� Heavy rainfall
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Precipitation Data

� Rain Gauge Data:

– Number of stations: 64

– Sampling frequency: 5 minutes

� Illustration:
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Precipication and Radar Data

� Look at dBZ-dBG pairs

– 46 inter-monsoon heavy rains in 2011

– 88274 pairs

– 70008 pairs with zero rainfall

dBG is based on hourly 

rainfall intensity in mm/h
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Marshall-Palmer Relationship

� MP relationship (Marshall-Palmer, 1948)

� Fitting result: Marshall-Palmer
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Performance Assessment of the MP 
Relationship

66%FAR (50mm/h ~ 70mm/h)

9%POD (50mm/h ~ 70mm/h)

53%FAR (30mm/h ~ 50mm/h)

34%POD (30mm/h ~ 50mm/h)

69%FAR (20mm/h ~ 30mm/h)

32%POD (20mm/h ~ 30mm/h)

Marshall-Palmer

(tested on 2010 data)

POD: Probability of Detection FAR: False Alarm Rate
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Least Squares

� Recalibrate the Z-R relationship for Singapore

� Method 1: Least squares (LS)

– Advantages: simple and commonly used

– Disadvantages: the normality assumption of residuals is violated; sensitive to

outliers.

� Fitting Results:

MP

LS

1.28214Z R=
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Performance Assessment and Comparison

66%

9%

53%

34%

69%

32%

Marshall-Palmer

(tested on 2010 data)

95%FAR (50mm/h ~ 70mm/h)

20%POD (50mm/h ~ 70mm/h)

90%FAR (30mm/h ~ 50mm/h)

26%POD (30mm/h ~ 50mm/h)

89%FAR (20mm/h ~ 30mm/h)

20%POD (20mm/h ~ 30mm/h)

Least Squares
(fitted using 2011 data;

tested on 2010 data)

� Although the LS method minimizes the sum of squared error, it is
apparently NOT a good choice if the goal is to estimate the rainfall 
intensity from reflectivity. 
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Quantile Regression

� Recalibrate the Z-R relationship for Singapore

� Method 2: Quantile Regression (QR)

– Advantages: Robust against outliers;  Outperforms least squares when the 

normality assumption is violated

� Fitting Results:

MP

LS

QR

1.38211Z R=
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Performance Assessment and Comparison

66%

9%

53%

34%

69%

32%

Marshall-Palmer
(tested on 2010 data)

95%

20%

90%

26%

89%

20%

Least Squares
(fitted using 2011 data;

tested on 2010 data)

85%FAR (50mm/h ~ 70mm/h)

48%POD (50mm/h ~ 70mm/h)

75%FAR (30mm/h ~ 50mm/h)

41%POD (30mm/h ~ 50mm/h)

79%FAR (20mm/h ~ 30mm/h)

28%POD (20mm/h ~ 30mm/h)

Quantile Regression
(fitted using 2011 data;

tested on 2010 data)

� In terms of POD, the Quantile Regression outperforms the other two for 
heavy rainfall prediction, especially when the intensity is larger than 
50mm/h

� In terms of FAR, the Quantile Regression is not as good as the default 
MP relationship.

� In general, considering the significant improvement of POD by the 
quantile regression, we still think the quantile regression outperforms 
despite the relatively larger FAR.
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Optimize Model Parameters

� Both POD and FAR are determined by the values of a and b

� Why not to find the optimum values of a and b that maximize POD subject to the 

maximum FAR constraint? 

� In this study, we are particularly interested in predicting extremely heavy rainfall 

events with intensity within 50~70 mm/h. This leads to the following optimization 
problem. 

max    POD( , )

s.t. FAR( , ) 0.66

a b

a b £

FAR of MP relationship 
for rainfall intensity 
within 50~70mm/h

POD for rainfall intensity within 
50~70mm/h (to be maximized)

We are searching for a and b that 1) maximize the POD for rainfall 
intensity within 50~70mm/h, and 2) with FAR not greater than that of 
the default MP relationship
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Optimize Model Parameters

� Recalibrate the Z-R relationship for Singapore

� Method 3: Maximization of POD for Rainfall Intensity within 50-70mm/h

� Results:

MP

LS

QR

1.945Z R=

Optimized 
to maximize 

POD
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Performance Assessment and Comparison

66%

9%

53%

34%

69%

32%

Marshall-Palmer

(tested on 2010 
data)

95%

20%

90%

26%

89%

20%

Least Squares

(fitted using 2011 
data;

tested on 2010 data)

85%

48%

75%

41%

79%

28%

Quantile Regression

(fitted using 2011 
data;

tested on 2010 data)

59%FAR (50~70mm/h)

25%POD (50~70mm/h)

59%FAR (30~50mm/h)

55%POD (30~50mm/h)

70%FAR (20~30mm/h)

44%POD (20~30mm/h)

With Optimized a and b

(fitted using 2011 data;

tested on 2010 data)

Conclusions:

1. The Z-R relationship in Singapore can be significantly improved over 
the default Marshall-Palmer relationship;  

2. When the goal is to predict the rainfall intensity from reflectivity, the 
optimum values of a and b are those that maximize the POD subject 
to the maximum FAR constraint;

3. It is interesting to see that a good fitting of the dBZ-dBG pairs (such 
as least squares or quantile regression) does not necessarily imply 
high accuracy in rainfall prediction based on reflectivity.
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Next Steps

�Continue the refinement of the optimization

�Evaluate against additional events

�Apply categorical metrics based upon rainfall intensity

�Experiment with quasi-operational deployment


