

Background

What is HFIP?

The Hurricane Forecast Improvement Project is a 10-year effort to accelerate improvements in 1–5-day forecasts for hurricane track, intensity, storm surge & to reduce forecast uncertainty, w/ an emphasis on rapid intensity change.

HFIP approach...

Invest in data assimilation & model development by the research community, as well as observations. Overall program includes an annual retrospective exercise that tests the most promising innovations.

Our role...

Provide objective verification statistics for contributed forecasts w/ a focus on performance relative to topperforming operational models. Evaluation is used to select experimental models that will be incorporated into NHC's real-time numerical guidance.

Results from all past exercises available at	
http://www.rap.ucar.edu/jnt/tcmt/	

2013 Modeling Group Participants

Organization	Model
MMM/SUNY-Albany	AHW
LIVA/ Madicon	UW-NMS 4km
	UW-NMS ensemble
NRL	COAMPS-TC
PSU	ARW
GFDL	GFDL ensemble mean
GSD	FIM
ECII	Multi-Model Super
F30	Ensemble
CIRA	SPICE
EMC	HWRF ensemble

Experimental Model Evaluations for Tropical Cyclone Forecasting L. Nance, M. Biswas, B. Brown, T. Fowler, P. Kucera, K. Newman, J. Vigh, and C. Williams National Center for Atmospheric Research, Boulder, CO Joint Numerical Testbed Program Tropical Cyclone Modeling Team

Summary Statistical Significance Tables

Pairwise tests for multiple baselines leads to large amount of information that needs to be condensed into a form NHC can easily determine key aspects of performance. Shading indicates difference is SS & darkness of shading is used to distinguish size of differences (magnitude or percent change), providing useful visual cues while retaining detailed info.

						Forecast Hour 12 24 36 48 60 72 84 96 108	consultation w/ NHC's Hurricane Specialists, the TCMT was able to develop summary SS
variable consensus	Fixed consensus	Track	Intensity			0.3 0.5 1.4 1.7 2.5 3.7 4.5 5.0 5.1 0.1111 0.111 <	- tables for the pairwise difference tests that concisely provide detailed information of interest
(ECMWF, GFS, UKMET, (I	DSHP, LGEM, GFDL,	v % < -6	% < -10	mean error		GHMI 5% 4% 11% 11% 15% 21% 24% 20% 26% Land/Water 0.970 0.735 0.973 0.954 0.980 0.996 0.997 0.998 0.99 0.4 1.0 1.8 2.1 3.0 4.3 4.5 5.1 5.2	to NHC. By comparing the properties of the error distributions, the TCMT is also able to
GFDL, HWRF)	HWRF)	$10^{-10} - 0^{$	-10 < % ≤ -5	difference	1 /	GHMI 6% 9% 13% 14% 18% 23% 24% 26% 27% Water Only 0.992 0.973 0.986 0.980 0.986 0.995 0.987 0.991 0.988 0.0 0.1 0.6 1.0 1.5 1.4 1.0 0.7 0.8	highlight areas of concern (large outliers) or favorable improvements (significant reduction
		9 -4 < % < 0	-5 < % < 0	0(improv(o(1)))	1.4	LGEM 0% 1% 5% 7% 10% 9% 7% 5% 5% Land/Water 0.257 0.453 0.988 0.997 0.999 0.999 0.933 0.789 0.78	in the largest errors) related to the experimental model performance that are not
Acknowledgments: The authors would like to th	hank the participating HFIP	u = 0 < % < 4	0 < % < 5	% improve (+)	► 11%	LGEM 0% 3% 6% 8% 10% 9% 7% 5% 6% 0 Water Only 0.353 0.984 0.999 0.999 0.999 0.997 0.901 0.740 0.76	immediately apparent when only considering the mean statistics. And finally, rank
generating retrospective forecasts, this work wou	and improving their models and uld not be possible. We would	$\int_{0}^{0} 4 \leq \% < 6$	5 ≤ ∆ < 10	/degrade (-)	0.973	Image: second	frequency tests provide a look at how the experimental model performs w/ respect to the
also like to thank James Franklin of NHC for all h	his fruitful discussions that	v % ≥ 6	% ≥ 10			0.0 0.4 0.7 0.9 1.3 1.3 1.0 0.9 1.4 DSHP 0% 4% 5% 6% 9% 9% 7% 6% 9% Water Only 0.305 0.983 0.963 0.898 0.953 0.898 0.642 0.566 0.73	operational models as a group. Moving forward, the TCMT is adding new approaches to its
contributed to refining and expanding our evaluat	tion approach. NCAR is	10×0 $\frac{10}{2} \times 0$	% < 0	p-value		-0.4 -0.9 -0.8 -0.9 -0.3 0.0 0.1 0.3 0.8 ICON -6% -9% -7% -7% -3% 0% 1% 2% 5% Lond/Water 0.999 0.974 0.923 0.386 0.030 0.113 0.222 0.49	evaluation directed at providing more diagnostic information about the experimental
performed under the auspices of the NOAA's Hur	rricane Forecast Improvement		% > U			Land/Water 0.335 0.355 0.314 0.923 0.386 0.036 0.113 0.222 0.44 -0.3 -0.4 -0.6 -0.6 0.0 0.6 0.6 0.8 1.3 ICON -4% -4% -5% -5% 0% 4% 4% 5% 8%	models' performance to provide insight to the on-going development process.
Project (HFIP).						Water Only 0.999 0.951 0.890 0.713 0.012 0.431 0.338 0.416 0.61	

The error distributions can also provide valuable information about the performance of experimental models. A model whose performance is as good as or perhaps slightly better than the operational models for a majority of the sample, but produces forecasts with errors significantly larger than the largest operational errors is not viewed favorably by the forecaster.

The rank frequency approach provides information about how the experimental model performed with respect to the operational baselines as a group. Ranks 1 (smallest error) – 4 or 5 (largest error) are assigned to all model errors, w/ ties assigned randomly. The frequency of each rank for the experimental model is displayed in a line plot by lead time.

By applying a variety of statistical tests to retrospective forecasts provided by the HFIP model development groups, the TCMT provides NHC w/ an in-depth picture of the experimental models' strengths & weaknesses w/ respect to track & intensity forecasts. Pairwise tests provide a powerful method for determining whether the mean errors for the experimental models are different those for the operational baselines. Working in consultation w/ NHC's Hurricane Specialists, the TCMT was able to develop summary SS tables for the pairwise difference tests that concisely provide detailed information of interest to NHC. By comparing the properties of the error distributions, the TCMT is also able to highlight areas of concern (large outliers) or favorable improvements (significant reduction in the largest errors) related to the experimental model performance that are not immediately apparent when only considering the mean statistics. And finally, rank frequency tests provide a look at how the experimental model performs w/ respect to the operational models as a group. Moving forward, the TCMT is adding new approaches to its evaluation directed at providing more diagnostic information about the experimental models' performance to provide insight to the on-going development process.

Error Distributions

Rank Frequency

Summar