Observational and Numerical Characterization of the Planetary Boundary Layer of the Urban Area of São Paulo - Brazil

OBJECTIVES

A series of atmospheric soundings performed during the austral summer and winter taken at the Campo de Marte Airport (Fig. 1c), near the center of the city of São Paulo, as part of the MCITY project (Micrometeorological features of the urban climate of São Paulo CITY) are compared to the results of the WRF model. The time evolution of the PBL was analyzed.

SÃO PAULO CITY: Area: 1,530 km²; Average altitude: 760 m; Population: 10,886,518 inhabitants; Vehicular fleet: 6,7 millions; Metropolitan area (Fig. 1c): 39 cities – 19 millions inhabitants

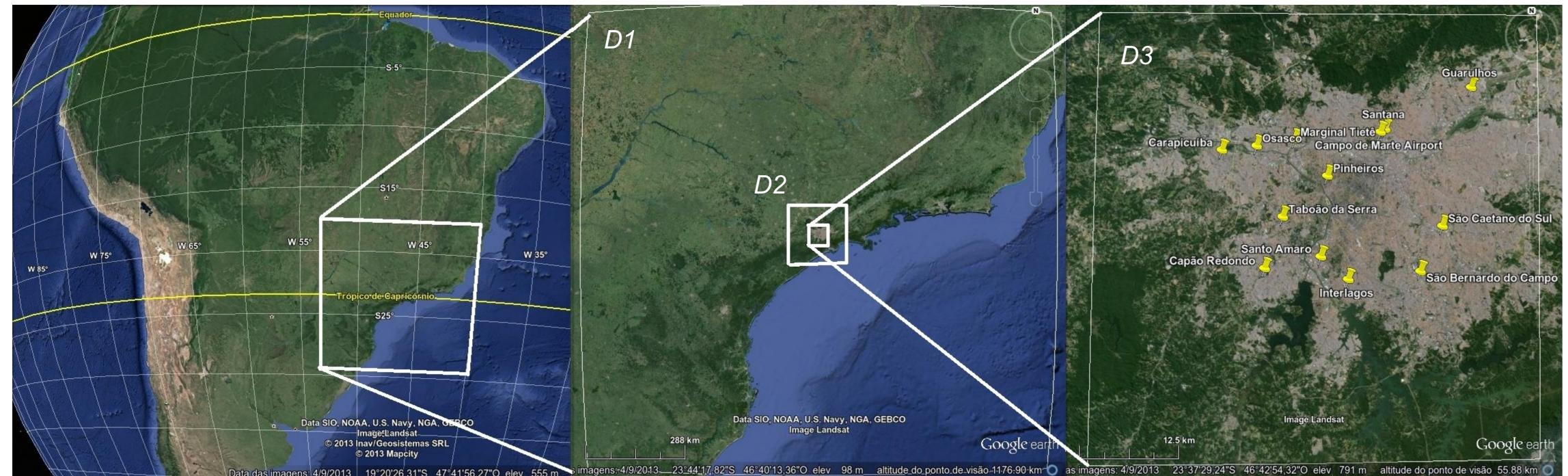


Figure 1: (a) Satellite image of South America. The square shows the parent domain (D1 – table 1). (b) The parent domain (D1). The squares show the children domains (D2 and D3). (c) D3 domain and the locations of the Campo de Marte Airport and the 12 Monitoring Stations of the Environmental Agency of São Paulo State (CETESB) – table 2.

METHODOLOGY

THE WRF MODEL: 3.5 version with 3 nested grids:

Domain		Horizontal Grid Points		Initial hours,
D 4				•
D1	30 km	80	31	a) mic
D2	10 km	25	31	c) sho
D3	6 km	51	31	bounda

and boundary conditions: GFS global model every 6 spatial resolution of 1°. Parameterization schemes: crophisics - WSM-3; b) cumulus - Kain-Fritsch scheme; nort and longwave radiation - RRTM/Dudhia; d) surface dary layer - Monin-Obukhov; and e) surface - Noah. Table 1: Resolution and grid points of the 3 domains used by the model simulation.

THE SOUNDINGS: From February 19th to February 28th of 2013 and from August 6th to August 16, a radiosonde sounding was launched every 3 hours, totalizing 80 vertical profiles of temperature, humidity and wind speed and direction for each campaign. They were taken at the Campo de Marte Airport (Fig. 1c).

VALIDATION OF THE MODEL: The hourly model results for the surface air temperature, relative humidity and wind velocity were compared to hourly averaged measurements taken at 12 Monitoring Stations of the Environmental Agency of São Paulo (CETESB) for the period of the summer campaign.

	0		x	,		•						
Monitoring Station (Fig. 1c)	Santana	S. Caetano do Sul	S. Bernardo do Campo	Santo Amaro	Osasco	Pinheiros	Carapicuí ba	Interlagos	Guarulhos	Marginal Tietê	Taboão da Serra	Capão Redondo
Air Temperature (°C)						2,976	2,813	2,367	2,043	2,15	2,562	2,388
Relative Humidity (%)							14,2	12,9	11,4	14,4	15,1	12,9
Wind Velocity (m s-1)	2,625	2,178	2,612	2,059	1,837	2,163	1,75	1,762	2,169	1,668		1,98
	о г			14					<u> </u>			

Table 2: Root Mean Square Error (RMSE) of the model results compared to the measurements taken at the Environmental Agency of São Paulo State (CETESB) Monitoring Stations from 00LT 02/18/2013 to 00LT 02/28/2013.

Period	Maximum PBL Height	Day-Time	Minimum PBL Height	Day-Time	Occurrences of PBL Height < 200 m			
Summer - Observation	1857	20 - 18LT	50		18			
Modeled	1895,8	21 - 15LT	48	25 - 03LT	15			
Winter - Observation	2068	10 - 15LT	50		14			
Modeled	2512,5	13 - 15LT	29,3	13 - 06LT	14			
Table 3: PBL maximum and minimum height during Summer and Winter campaign, estimated by the soundings and modeled by WRF.								

ACKNOWLEDGEMENT

This work is funded by FAPESP, FAPERJ and CNPq. We would like to thank the Environmental Agency of São Paulo State (CETESB) for providing the data.

1-flaviaribeiro@usp.br; 2-maxsuelmrp@gmail.com; 3-apdolive@usp.br

Flávia Noronha Dutra Ribeiro¹, Lenon Colosovski Lopes¹, Maxsuel M. R. Pereira² e Amauri Pereira de Oliveira³

RESULTS

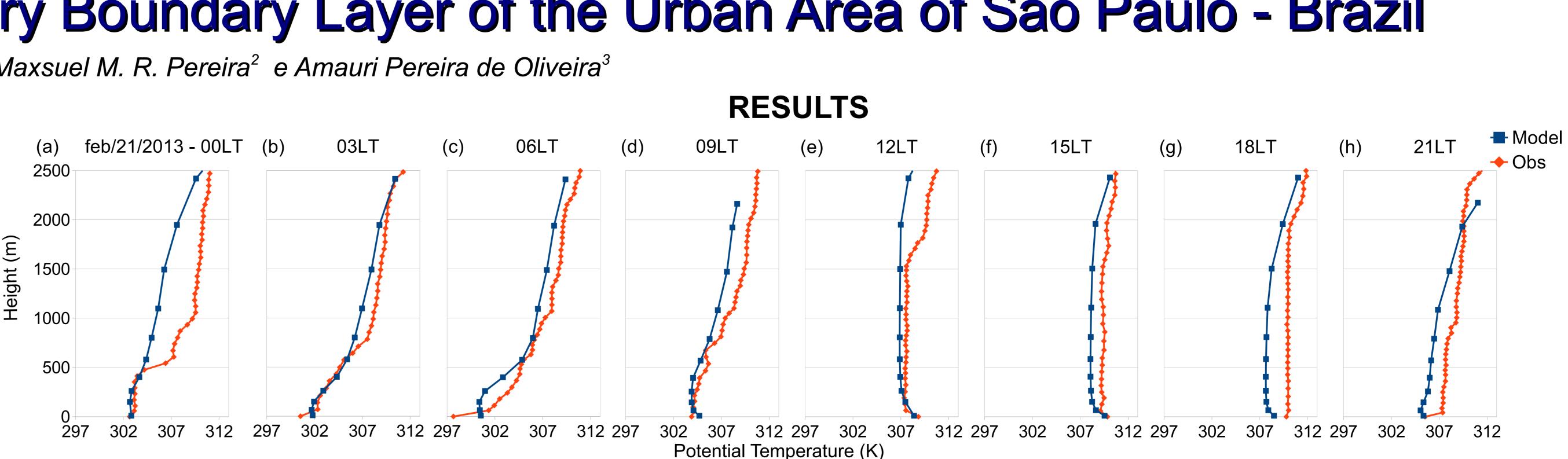


Figure 2: Vertical profile of potential temperature from the soundings (obs-orange line) and modeled (model-blue line) - Feb/21/2013 at (a) 00LT, (b) 03LT, (c) 06LT, (d) 09LT, (e) 12LT, (f) 15LT, (g) 18LT and (h) 21LT.

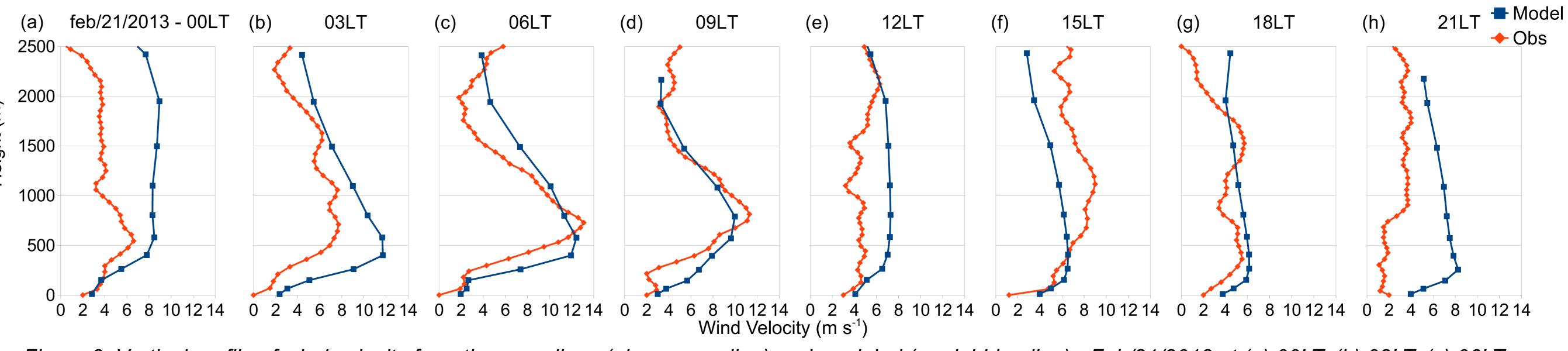


Figure 3: Vertical profile of wind velocity from the soundings (obs-orange line) and modeled (model-blue line) - Feb/21/2013 at (a) 00LT, (b) 03LT, (c) 06LT, (d) 09LT, (e) 12LT, (f) 15LT, (g) 18LT and (h) 21LT.

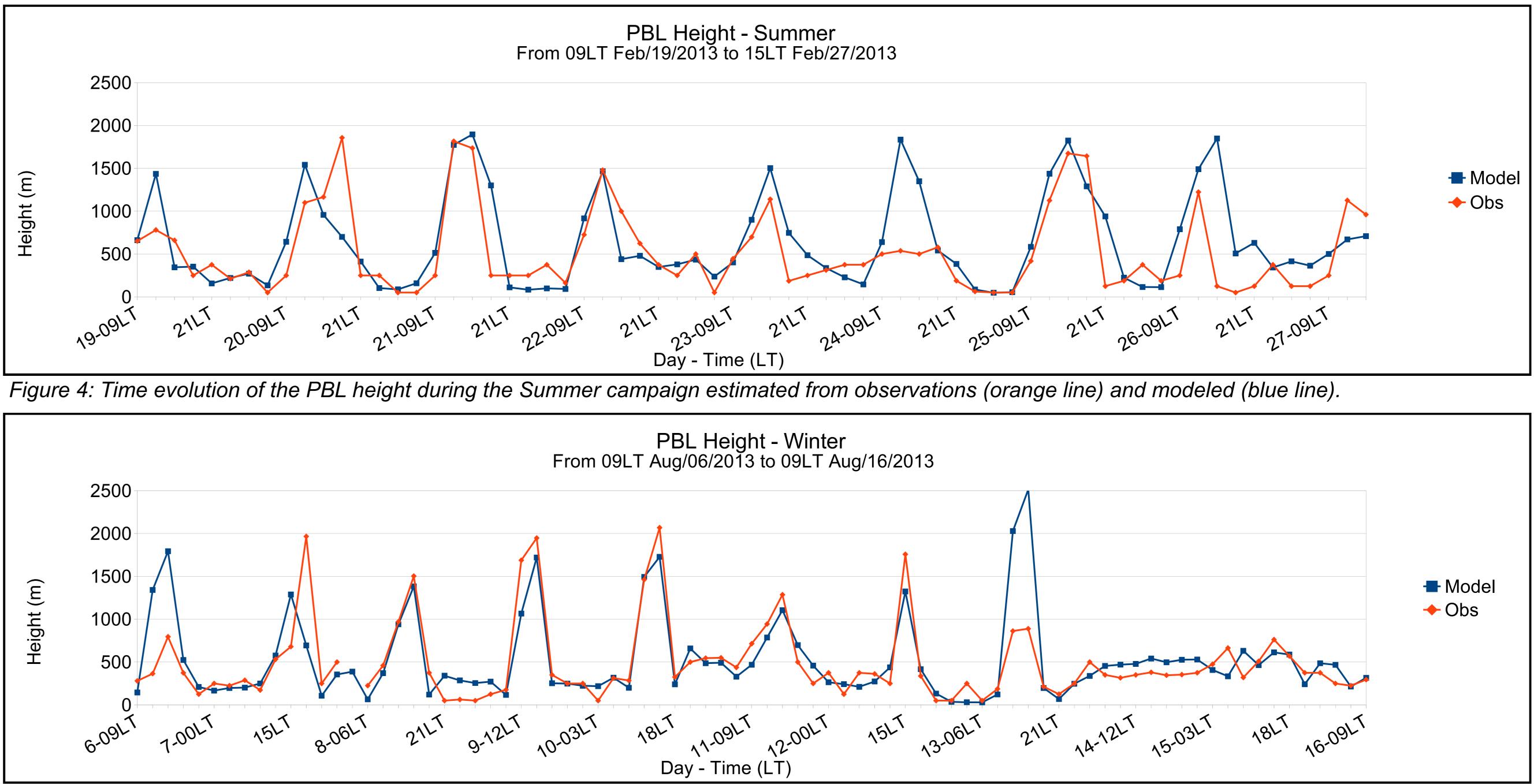


Figure 5: Time evolution of the PBL height during the Winter campaign estimated from observations (orange line) and modeled (blue line).

DISCUSSION AND CONCLUSION

The PBL evolution presented a similar behavior for the austral summer and winter periods, but the minimum and the maximum PBL height values were found during winter. The passages of cold fronts have an important impact on the PBL evolution. A low level jet is present during most of the nights. The model was able to represent important features of the PBL over the city of São Paulo, such as the PBL evolution and the low level jets. Future work will be to compare the direction of the wind and to determine the cause of the low level jets; to increase the vertical resolution of the model in order to improve the results near the surface and to test other parameterizations and study the performance of the model.

