# Global Coupled Atmosphere/Ocean Model for Climate and Seasonal Forecast Applications

Shan Sun<sup>1</sup>, Georg Grell<sup>1</sup>, Rainer Bleck<sup>1,2</sup> and Stan Benjamin<sup>1</sup>

<sup>1</sup>NOAA Earth System Research Laboratory <sup>2</sup>NASA Goddard Institute for Space Studies

94<sup>th</sup> American Meteorological Society Annual Meeting February 3-6, 2014 Coupled Atmospheric-Ocean Modeling on an Icosahedral Grid at NOAA/ESRL

atmosphere

ocean

Flow-following\* finite volume Icosahedral Model (FIM)

Icosahedral Ocean Model (iHYCOM)

<sup>\*</sup> flow-following = vertically quasi-Lagrangian

#### Coupled Atmosphere/Ocean at NOAA/ESRL

#### FIM atmospheric model

- Flow-following, finite volume, quasi-Lagrangian vertical coordinate, hydrostatic dynamics
- On the icosahedral horizontal grid
- Developed at NOAA/ESRL in collaboration with NCEP: GFS column physics
- Running operationally with comparable scores to NCEP GFS (http://fim.noaa.gov)
- iHYCOM ocean model: icos HYCOM
  - HYCOM ocean model rewritten for icosahedral grid
  - Sharing multiprocessor environment developed for FIM
  - No need for spatial interpolation at the air-sea surface

# HYCOM is short for HYBRID COORDINATE OCEAN MODEL







#### HYCOM on icosahedral grid: iHYCOM



## **Seasonal Experiments**

- - near zero global heat & freshwater flux at surface
- Coupled atmospheric ocean model FIM (based on model 2) coupled to iHYCOM

All use 60km horizontal resolution & 64 layers



#### Biases in Zonal Surface Downward Shortwave Flux







#### Ratio of Convective Precipitation to Total (%), ANN



### **Summary**

- Coupled FIM/iHYCOM model has the advantage of avoiding grid discontinuity at the air-sea surface, hence no need for interpolating flux coupler
- The mathematical similarity of the two models allows them to share dycore components and software engineering innovations
- FIM/iHYCOM is being developed to participate in NMME (National Multi-Model Ensemble), as well as for ESPC (Earth System Prediction Capacity) applications
- There are still large regional biases in surface shortwave flux
   & precipitation, most likely due to biases in cloud coverage
- Remaining climate drift in multi-year coupled runs reveals the need to further revise the column physics parameterizations in FIM/GFS/CFS via coordination between ESRL, EMC, and MAPP Process Teams