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Table 3 provides the summary statistics for each supercell sub-classification.

. . . . . . . . 2012-2013 Field Observations * A “supercell in a cluster — right mover” was the most common sub-classification
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losses in the United States (Changnon et al. 2009). Despite a general negative trend in measurement locations for the study are shown in Figure 5. Table 1 provides a summary of « Compressive stress values 1.2} ) . . .
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Figure 5. Map of all measurement locations standard deviation from the mean for each group.
for 2012 (yellow) and 2013 (blue) sampled events
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Figure 1. Diagram of measured hailstone Figure 2. Cataloged photograph from 20 May 2013 of - g?sffa;gis;?_f;f’zg;5;;0.%_:0'82
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developed a unique piece of | — a Jemeertem Smith et al. (2012) was Supercel the two year field phase was approximately 2 cm with 60% of the dataset falling
SE e 9l Il Clos sl leel Figure 6. Hailstone shape classification AT 76 GBSO IESS SeUAD £18 € Wiieiliol &y used to classify each e below the National Weather Service’s severe threshold (2.54 cm / 1 in).
gap (Figure 3). The 2012 and 2013 field distribution for 2012-2013 field observations. equivalent diameter for each shape classification. arent thunderstorm s | celin | | celin | o |
campaigns provided the first opportunity | _ Power-law fits shown for each class. 'T'h assification t - « Mean compressive stress values were generally similar to that found in
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natural hailstones. Figure 3. Compressive force test being conducted on mass was examined with respect to the o decision tree described by Smith et al. (2012). * Both hard and soft stones were encountered in most events. However discrete
a hailstone on 18 May 2013. four shape classifications. A power-law | ¢ Fied observatons ] storm modes did exhibit some clustering of compressive stress values.
il relationship as shown in Figure 7. | ] isti i i i - i . . . . .
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compresses. Figure 4 shows a time s00) | | | | S 100} - — diameter.
history of compressive force for three 0| j ) IFISId otbser.'vatlonhs RSl c_omfared \c,IVIth g ol - » The contribution of the hardness property of hailstones and how it relates to the
consecutive tests on three different % : a (.)ra ory 1ce S.p eres using ap an 60-— . Table 2. Summary statistics for each primary convective mode classification. imparted force and duration of impaCt IS not as well understood. Future work will
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rate and subsequent brittle failure. The : m0|d3. of 3.175 cm (1.25 in.), ‘}-445 cm 2 4 'D_ | f ( ') s 10 12 QLCS 4 142 3.99 2.27 2.90 0.46 For references, please see the accompanying manuscript
measured compressive force at the point s0f N (1.751in), and 5.715 cm (2.25 in.). . . Supercell 19 746 10.69 2.41 6.46 0.76 ' . _
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Figure 4. Time history of measured compressive force ice spheres.
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