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Other Presentations of Related Work
Conference on Weather, Climate, and the New Energy Economy:

� 6.3  Enabling Advanced Weather Modelling and Data Assimilation for Utility Distribution Operations 

� 8.1  Outage Prediction and Response Optimization (OPRO)

� 10.1  Improvements in short-term solar energy forecasting – Thursday morning

� 10.2  Two methods in improving onshore wind forecast – Thursday morning

Conference on Numerical Weather Prediction:

� 9.3  Ensemble Kalman Filter (EnKF) Assimilating the Dropsonde Observations to Reduce the Forecast Track 
Error of Typhoon Soulik (2013) Based On the Cloud-resolving Model

� 13.2  Recent Advances in High-Resolution Operational NWP, Utilizing WRF-ARW – Thursday morning

Conference on Artificial and Computational Intelligence and its Applications to the Environmental Sciences:

� J3.2  A multi-scale solar energy forecast platform based on machine-learned adaptive combination of expert 
systems – Wednesday morning

Conference on Climate Variability and Change:

� 8C.4  Simulation of the temporal and spatial characteristics of diurnal rainfall cycle over Borneo

Symposium on Advances in Modeling and Analysis Using Python:

� 3.5  A Python-Based Automatic Data Aggregation Framework for Hydrology Models

Superstorm Sandy and the Built Environment: New Perspectives, Opportunities, and Tools:

� 873  Forecast Performance of an Operational Mesoscale Modeling System for Post- Tropical Storm Sandy in 
the New York City Metropolitan Region

Conference on Probability and Statistics in the Atmospheric Sciences

� 4.2  Customized Verification Applied to High-Resolution WRF-ARW Forecasts for Rio de Janeiro

� 6.5  Statistical forecasting of rainfall from radar reflectivity in Singapore

Symposium on the Urban Environment

� J12.2  High-Resolution, Coupled Hydro-Meteorological Modelling for Operational Forecasting of Severe 
Flooding Events in Rio de Janeiro
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Precision Wind Power Forecasting via Coupling of 
Turbulent-Scale Atmospheric Modeling with 

Machine Learning Methods

�Motivation and background

�Approach

�Preliminary results

�Project plans and status
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Motivation and Background

� Wind power intermittency creates 
significant barriers to expanding 
utilization

• Ramp events

• Spinning reserve

� Better forecasting and optimized 
economic dispatch can alleviate 
these barriers

• Ensemble forecasts

• Stochastic programming

• Dynamic reserves

� Challenges are greater for isolated 
systems such as on islands

• No grid interconnection with larger 
systems
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Canary Islands
�Isolated system across the archipelago 
(7,493 square km of land area)

�Red Eléctrica de España:  45 wind 
farms, located on 5 of the 7 islands with 
~142 MW aggregated capacity with a 
wide variety of equipment (327 turbines)

�Complex topography leads to turbulent 
flow, especially along the coastlines

–Peaks up to 3500m, inducing vortices

�Large power output variability as a 
result of ramp events

–For example, 7 November 2010:  61% 
variability in a four-hour time span on Gran 
Canaria

–Impacting reliability, electricity generation

�Ramp events are poorly predicted

–NWP-based forecasts do not capture flow

–Machine learning and statistical methods 
are brute force and lack good training sets
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Approach
�Given the geography of the archipelago, and the spatial 
distribution of the individual turbines, turbulence-scale 
modeling becomes essential to capture the flow

�Introduce large eddy simulations (LES)

–Capture planetary boundary layer (PBL) effects

–Momentum, heat, moisture flux terms become critical

–High-temporal resolution required to capture transients (output every five 
minutes)

�Retrospective analysis of critical ramp events

–Many numerical experiments to enable effective model configuration

�Balance detail vs. performance

–Horizontal/vertical resolution vs. time step, subject to CFL stability criteria

|U|*dt/dx <= 1
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Approach to Coupled Weather and Power Modelling

Local “Diagnostic”
Weather Model

� 1-2 km horizontal 
resolution

� 20-1000m vertical 
resolution

� Full dynamics and 
3d physics

Local Prognostic
Weather Model

Global
Weather Model

Detailed Static
Surface Data

Wind Power Model

� 400-800m horizontal 
resolution

� 20-1000m vertical 
resolution

� Turbulent-scale 
dynamics and more 
limited physics
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Weather Model Configuration:  WRF-ARW 3.3.1
� 50 vertical levels with ~10-15 in the planetary boundary layer to ensure 

capturing of orographic effects

� 24 hour runs initialized at 0 UTC

� NOAA GFS for background and lateral boundary conditions

� SRTM-based model orography (90m)

� MODIS-based land use data

� 1km-resolution JPL SSTs

� Four 2-way nests at 54-km (87x70), 18-km (151x118), 6-km (268x199), 
2-km (358x244) focused on the Canary Islands

• WSM 5-class single moment microphysics, RRTM long wave radiation, GSFC short 
wave radiation, YSU PBL, NOAH LSM, Kain-Fritsch cumulus physics

� Three one-way LES domains embedded within domain four at 666.67m 
resolution (178x244, 250x163, 172x253)

• WSM 5-class single moment microphysics, new GSFC long and short wave radiation, 
LES PBL, NOAH LSM, explicit cumulus physics

� Data assimilation is not feasible given the lack of a comprehensive 
observing system
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Weather Model Configuration

50 vertical levels 
with 10 to 15 in 
the planetary 

boundary layer

Four 2-way telescoping nests 
at 54, 18, 6 and 2 km 

horizontal resolution driving 
three, independent one-way 

LES nests at 667m resolution 
focused on the Canary 

Islands
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Weather Model Configuration

50 vertical levels 
with 10 to 15 in 
the planetary 

boundary layer

Four 2-way telescoping nests 
at 54, 18, 6 and 2 km 

horizontal resolution driving 
three, independent one-way 

LES nests at 667m resolution 
focused on the Canary 

Islands
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�Build predictive 
model from 
historical weather 
forecasts and 
power, and related 
data

–Wind farm power

–Turbulent flow

–Wind farm 
locations and 
characteristics

Model Training

Historical 
Power 
Data

Historical 
Weather 

Data

Power Forecast

Calibrated Weather
Model

Model Training

Coupled Weather and Power Modelling

Machine 
Learning
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Approach

�Create a targeted hindcast database as a training set for 
the machine learning algorithms, based on the 
atmospheric physics

–Starting with 19 ramp events throughout  2010 and 2011

–Goal:  enable a six-month continuous period (daily)

�Avoid brute-force machine learning approach

–Use only data that relate to energy extraction process

–Volumetric Turbulent Kinetic Energy (TKE), absolute vorticity, 3-vector 
wind fields

–Derived surface gusts and Clear-air Turbulence (CAT) index (two-
dimensional)
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Additional Challenges:  Verification

�Insufficient weather observations:  7 stations across the 
archipelago with only hourly reporting

•May miss the transient events

•5-minute interval data from hindcasts unverifiable

�Power data are “limited”

•Hourly percentage increase/decrease, aggregated over each island

•No power curve information for each turbine or farm

•Only two years available: 2010-2011
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Example Results: 7 November 2010 Ramp Event 
0300 - 0700 UTC

Animation of 10m winds and TKE (red isosurfaces at 2J/kg) indicative of turbulent flow

� The 10m wind streamlines above the water are derived from the 2km nest (4)

� The isosurfaces are derived from the three 666.67m nests (5)

� The terrain of each island is shown 

� The location of each of the 45 wind farms are marked with a white pole whose height corresponds to the 
blade extent for the deployed turbines
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Machine Learning (ML) for Power Forecasts

�Transform NWP output into energy forecasts

�Currently ML-based energy forecasts are derived from 
numerical patterns obtained from NWP outputs derived at 
the synoptic scale (from ECMWF)

�This approach implies both a large increase of the NWP 
pattern dimension and of sample size, which goes from 
eight to at least 24 patterns per day 

�Sample sizes and dimension will have the same order of 
magnitude, contrary to the ML rule of thumb of sample size 
being an order of magnitude greater
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Machine Learning (ML) for Power Forecasts

� The very fine resolution data from the turbulent-scale NWP input can 
be extremely large for ML models

• This clearly precludes the application of non-linear models, as their time complexity 
would be prohibitive

� It has been observed in other fields that simple linear models can yield 
good results for problems with large dimensional inputs 

1. Linear Support Vector Regression (SVR), which uses the so-called hinge-loss that 
penalizes only forecast errors above a certain tolerance

2. Elastic Net and Lasso methods

• Both combine a square error function with an L1 regularization penalty term

• Elastic Net also adds a quadratic penalty, as done in ridge regression

� Both approaches present two important properties 

1. The models are built solving a convex optimization problem and, thus, have a 
unique minimum value

2. The hinge loss of SVR and the L1 regularization of Lasso and Elastic Net result in 
sparse final models with many zero coefficients that enable a fast application to new 
data and also can be exploited for ranking the predictive NWP variables
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Social Network Analysis (SNA) Graph of Results
� Each island is a blue 

rectangle

� Each meteorological 
variable is a green circle 
with the corresponding 
weights

� A specific island can be 
highlighted by clicking on 
a rectangle

� The weight of a circle 
corresponds to the 
aggregation of weights for 
that variable in all the 
separate models per 
island

� Each island shows the 
weight of the variable for 
that model

� Gran Canaria and Tenerife 
are in the same cluster:  
the most predictive 
variables are the same

� A second cluster is for the 
others islands
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�The forecasts produced by the combination of the 
turbulent-scale NWP forecasts and the linear models will be 
compared with those obtained using ECMWF forecasts at a 
0.25 degree resolution

�The linear models using the turbulent-scale NWP have been 
built using a comparatively short two-month training period

�The ECMWF forecasts were used with the non-linear 
models built using a 12-month training period

�10 different instances with different parameterizations are 
shown with hourly output for three different sample sizes

Machine Learning (ML) for Power Forecasts
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Predictions for Gran Canaria

19

Prediction ECMWF Case 1 Case 2 Case 3

Resolution 0.25 Mean: 0.006 Mean: 0.006 Mean: 0.006

Grid points 207 126441 126441 126441

Variables 4 71 (10 levels) 71 (10 levels) 71 (10 levels)

Step 3-Hourly 30 minutes 5 minutes 15 minutes

Historical data 18 months 2 months 2 months 2 months

Space required Total: 500 MB Total: 600 GB Total: 600 GB Total: 600 GB

Execution time 20 minutes 1.3 hours > 10 hours 2.2 hours
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20

Production

Using ECMWF Data

Case 1 Case 2 Case 3

Test Period: 10/02/2010 - 10/06/2010 

Predictions for Gran Canaria
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Predictions for Tenerife

21

Model ECMWF Case 1 Case 2 Case 3

Resolution 0.25 0.1 Mean: 0.006 Mean: 0.006

Grid points 207 506 126.441 126.441

Variables 4 38 71 (10 levels) 71 (10 levels)

Steps 3-Hourly Hourly 5 minutes 30 minutes

Historical data 18 months 2 months 2 months 2 months

Space required Total: 500 MB Total: 600 GB Total: 600 GB Total: 600 GB

Execution time 20 minutes 25 min 4 hours 54 min
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22

Production

Using ECMWF Data

Case 1 Case 2 Case 3

Predictions for Tenerife

Test Period: 10/02/2010 - 10/06/2010 
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Comparison of Prediction for Tenerife to Production
(Root Mean Square Error)

Using ECMWF Data Case 1 Case 2 Case 3

Test Period: 10/02/2010 - 10/06/2010 
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Conclusions

� Model development and optimization were more 
complex than originally estimated

� Current method uses 18 months of ECMWF data

� Methods using turbulent-scale NWP have been trained
with only 2 months of data

� Despite the difference in the training periods, the quality
is similar

� In some periods, the error is lower with the turbulent-
scale NWP for some islands

� Significant potential for the application of fine-resolution 
NWP models for forecasting wind energy over islands 
or, more generally, isolated renewable energy systems

24
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� Expand size of training set, retrain the models and
evaluate the results, including additional metrics

� Evaluate other potential NWP configurations

� Determine an optimal balance between the current
temporal (5 minute) and spatial (667m) resolution to
reduce the computational cost for the ML methods

� (Limited) verification of weather hindcasts

Future Work
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Backup 

Slides
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Computational Issues
�Ordinarily, significant resources required to enabling LES 
forecasts in a production environment over a large domain
• Some effort to address the practicality using a modest HPC system

• Effort to build training set and potential for operational use

�Optimized for a cluster of ten 32-way Power7 nodes, each 
with 256GB memory with a DDR Infiniband interconnect
• Four 2-way nests (to 2km) run 24 hours in 50 minutes on six nodes

• Three 667m LES nodes run in parallel, each using three nodes requires about 
100 minutes as an NWP post-process (1-way nests)

• End-to-end processing is about 3.5 hours per 24-hour simulation

• Six-month climatology requires  ~630 hours of compute time

�Each run generates 180 GB of data (uncompressed)
• Most of the data are not relevant to drive machine learning

• Four 2-way nests are cheaper to recompute than store

• Only store fields related to turbulent flow in lower part of the boundary layer, 
resulting in a six-month climatology  ~1 TB in size



© Copyright IBM Corporation 2014

28

Conference on Weather, Climate, and the New Energy Economy:  9.1

Preliminary Results: 7 November 2010 Ramp Event 
0300 - 0700 UTC

Animation of 10m winds and [u,v,w] (red isosurfaces at 10m/sec) indicative of turbulent flow

� The 10m wind streamlines above the water are derived from the 2km nest (4)

� The isosurfaces are derived from the three 666.67m nests (5)

� The terrain of each island is shown 

� The location of each of the 45 wind farms are marked with a white pole whose height corresponds to the 
blade extent for the deployed turbines


